机器学习笔记-Day2

机器学习绪论

1.版本空间(version space)

  1. 概念:与 " 训 练 集 " \color{red}{"训练集"} ""一致的假设集合
  2. 求法:
    • 根据训练集中的 " 正 例 " \color{purple}{"正例"} "",知 “ 好 瓜 ” \color{purple}{“好瓜”} 的概念成立,故删除 ∅ \color{purple}{\empty} 的假设
    • 删除 与 正 例 不 一 致 \color{purple}{与正例不一致} 的假设
    • 删除 与 反 例 一 致 \color{purple}{与反例一致} 的假设
    • 剩余假设的集合构成版本空间

2.归纳偏好(inductive bias)

  1. 概念:机器学习算法在学习过程中对某种类型假设的偏好,称为"归纳偏好" (inductive bias) , 或简称为"偏好"
  2. 意义:算法的归纳偏好是否与问题本身匹配,大多数时候直接决定了算法能否取得好的性能.

3.奥卡姆剃刀(Occam’s razor)

  1. 概念:若有多个假设与观察一致,则选最简单的那个
  2. 注意:奥卡姆剃刀本身存在不同的诠释,使用奥卡姆剃刀原则并不平凡,“简单”的释意并不简单

4.没有免费的午餐定理(NFL,No Free Lunch Theorem)

  1. 概念:假设所有"问题"出现的机会相同或所有问题同等重要,无论学习算法 L a \mathfrak{L}_{a} La多聪明、学习算法 L b \mathfrak{L}_{b} Lb多笨拙,它们的期望性能相同
  2. 重要的寓意:
    • 脱离具体问题,空泛地谈论"什么学习算法更好"毫无意义
    • 谈论算法的相对优劣,必须要针对具体的学习问题

5.大数据时代三大关键技术

  • 机器学习(Machine Learning):实现数据分析
  • 云计算(Cloud Computing):实现数据处理
  • 众包(crowdsourcing):实现数据标记
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值