python theil-sen trend analysis+MK检验

本文介绍了使用Python的Theil-SenRegressor进行趋势分析,探讨了有无截距计算的差异,并提到了Mann-Kendall趋势检验,一种用于检测时间序列中增减趋势的非参数方法。由于MK测试不依赖于数据的正态性,但要求无序列相关性,文章还提及了序列相关可能带来的影响及解决方法,如修改后的MK测试和季节性MK测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理后续补充

theil-sen trend analysis
from sklearn.linear_model import TheilSenRegressor
Theil-Sen trend analysis有无截距计算的差异
在这里插入图片描述

no intercept–>fit_intercept=False
intercept–>fit_intercept=True

MK检验
The Mann-Kendall Trend Test (sometimes called the MK test) is used to analyze time series data for consistently increasing or decreasing trends (monotonic trends). It is a non-parametric test, which means it works for all distributions (i.e. data doesn’t have to meet the assumption of normality), but d

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

balabalahoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值