数值分析绪论

数值分析是研究用计算机求解数学问题的数值方法及其理论,涉及数值积分、微分、方程求解等领域。误差分为绝对误差和相对误差,有效数字用于衡量近似值的精确度。数值算法设计应遵循简化计算、避免特定运算等原则,以确保数值稳定性和效率。
摘要由CSDN通过智能技术生成

绪论

本专栏使用的参考数目为 《数值分析》陈欣 曲绍波 刘芳主编,中国工信出版集团电子工业出版社,下述内容可能会引用原文

引言

数值分析也称为计算方法,它研究用计算机求解数学问题的数值方法及其理论,是计算
数学的主体部分. 它涉及科学计算中的常见问题,如函数的插值与逼近、数值积分与数值微分、线性和非线性方程的求解、矩阵特征值问题和微分方程的数值解法等. 数学与科学技术一向有着密切的关系并相互影响,利用科学技术解决实际问题时通常都需要建立数学模型. 但很多数学模型较为复杂,往往不易求出精确解,于是人们讨论问题的简化模型,求其解析解,而过于简化的模型又会导致所求的解不能满足精度要求. 随着计算机科学与技术的飞速发展和计算数学理论的日益成熟,特别是具备超强计算能力的计算机系统的出现,为求解复杂的数学模型提供了强大的硬件保障. 一批适合计算机求解并节省计算量的数值分析方法随之产生,并被广泛使用,成为科学计算的主要方法. 目前,数值分析在科学与工程计算、信息科学、管理科学、生命科学、经济学等领域中有着广泛应用,已经成为与理论分析和科学实验并列的第三种科学研究方法和手段. 用计算机求解数学问题,基本过程如下:

实际问题
建立数学模型
选择数值计算方法
设计程序
计算结果并分析

用数值方法解决数学问题就是完成以下工作:如何把数学模型归结为数值问题,如何估计一个给定算法的精度或构造精度更高的算法,如何分析误差在计算过程中的积累和传播,如何使算法较少占用存储量,如何分析算法的优缺点. 应当指出,数值方法的构造和分析是密不可分的,二者缺一不可. 对于给定的数学问题,常常可以构造出多种数值方法. 那么,如何评价这些方法的优劣呢?一般来说,一个好的方法应具有如下特点.

  1. 针对计算机设计,结构简单,易于编程实现.
  2. 有可靠的理论分析. 例如,误差分析、稳定性分析等,在理论上应能保证方法的收敛性和数值稳定性.
  3. 有好的复杂度. 好的时间复杂度能够提高方法的计算速度,节省时间;好的空间复杂度能够节省存储空间.
  4. 便于设计数值实验. 通过数值实验来验证算法的可行性和有效性.

在学习数值分析课程时,要掌握方法的基本原理和思想,要注意方法处理的技巧及其与计算机的结合,要重视误差分析、收敛性及稳定性的基本理论,达到灵活运用数值分析方法解决实际问题的目的

基本概念

1、误差

绝对误差

定 义 x ∗ 为 准 确 值 , x 为 x ∗ 的 一 个 近 似 值 称 定义x^*为准确值,x为x^*的一个近似值称 xxx
E ( x ) = x − x ∗ E(x) = x -x^* E(x)=xx 为 近 似 值 x 的 绝 对 误 差 ( A b s o l u t e E r r o r ) , 简 称 为 误 差 。 为近似值x的绝对误差(Absolute Error),简称为误差。 x(AbsoluteError),
此定义可以分析得到, E ( x ) E(x) E(x)可正可负,通常情况下,我们的不到精确值 x ∗ x^* x,因而只能根据计算情况估计一个最小误差范围,及最大的 ∣ E ( x ) ∣ |E(x)| E(x),即误差上限
我 们 定 义 我们定义 ∣ E ( x ) ∣ = ∣ x ∗ − x ∣ ≤ ε |E(x)| = |x^*-x| \leq \varepsilon E(x)=xxε
正 数 ε 称 为 近 似 值 x 的 绝 对 误 差 限 正数\varepsilon 称为近似值x的绝对误差限 εx
进 而 我 们 可 以 通 过 x ∗ − ε ≤ x ≤ x ∗ + ε 来 给 定 x 的 范 围 进而我们可以通过x^*-\varepsilon \leq x \leq x^*+\varepsilon 来给定x的范围 xεxx+εx
工 程 上 我 们 一 般 用 x = x ∗ ± ε 来 表 示 工程上我们一般用 x =x^*\pm \varepsilon 来表示 x=x±ε

绝对误差的大小在许多情况下还不能完全刻画一个近似值的精确度. 例如,测量一个人的身高为 170 ± 1 c m 170\pm1 cm 170±1cm,而测量一本书的长度为 20 ± 1 c m 20 \pm1 cm 20±1cm,是否说明两者测量的精确度是一样的呢? 如果考虑被测量数值本身的大小,前者的误差所占比例为 1 170 ≈ 0.59 % \frac{1}{170} \approx 0.59\% 17010.59% ,而后者的误差所占比例为 1 20 ≈ 5 % \frac{1}{20} \approx 5\% 2015% ,显然前者测量得更精确. 由此可见,评估近似值的精确度,不仅要看绝对误差的大小,还要考虑数值本身的大小,这就需要引入相对误差的概念.

相对误差

仿照绝对误差的定义方式,我们最终推导出了
∣ E r ( x ) ∣ ≈ ∣ E ( x ) x ∣ = ∣ x − x ∗ x ∣ ≤ = ε r |E_r(x)| \approx |\frac{E(x)}{x}| = |\frac{x-x^*}{x}| \leq = \varepsilon_r Er(x)xE(x)=xxx=εr

称正数 ε r \varepsilon_r εr为近似值 x 的相对误差限(Relative Error Bound)

2、有效数字

当一个准确值 x ∗ x^* x 有小数时,通常按照四舍五入原则得到 x ∗ x^* x的近似值 x x x . 例如,无理数 π = 3.1415926535897932384626 π = 3.1415926535897932384626 π=3.1415926535897932384626,若按照四舍五入原则分别取 2 位和 6 位小数,可得 π = 3.14 , π = 3.141593 \pi =3.14,\pi=3.141593 π=3.14,π=3.141593
不管取几位小数,其绝对值的绝对误差限都不超过末尾数字的半个单位,即
∣ π − 3.14 ∣ ≤ 1 2 ✖ 1 0 − 2 , ∣ π − 3.141593 ∣ ≤ 1 2 ✖ 1 0 − 6 |\pi - 3.14 |\leq\frac{1}{2}✖10^{-2},|\pi - 3.141593 |\leq\frac{1}{2}✖10^{-6} π3.1421102π3.14159321106

定义
x ∗ x^* x 为准确值, x x x x ∗ x^* x 的一个近似值,如果 x x x 的绝对误差限不超过它的某一数位的半个单位,并且从 x x x 左起第一个非零数字到该数位共有 n n n 位,则称这 n n n 个数字为 x x x 的有效数字(Significant Figures),也称用 x x x 近似 x ∗ x^* x 时具有 n n n 位有效数字.

我们看一个例题理解一下

例题

若下列近似值的绝对误差限都是 0.0005,它们各具有几位有效数字?
( 1 ) a = 251.234 ; ( 2 ) b = 0.208 ; ( 3 ) c = 0.002 ; ( 4 ) d = 0.00013 (1) a = 251.234 ;(2)b = 0.208 ;(3)c = 0.002 ;(4) d = 0.00013 1a=251.2342b=0.2083c=0.0024d=0.00013

因为 0.0005 = 1 2 ∗ 1 0 − 3 0.0005 = \frac{1}{2}*10^{-3} 0.0005=21103 是小数点后第 3 位的半个单位,所以 a 有 6 位有效数字 2,5,1,2,3,4;b 有 3 位有效数字 2,0,8;c 有 1 位有效数字 2; d 没有有效数字。

有效数字还有另一种定义方式
x x x x ∗ x^* x 的一个近似值,表示为
x = ± 1 0 k × 0. a 1 a 2 a 3 ⋯ a n x = \pm 10^k × 0.a_1a_2a_3\cdots a_n x=±10k×0.a1a2a3an其中每个 a i ( i = 1 , 2 , … , n ) a_i(i=1,2,\dots,n) ai(i=1,2,,n) 均为 0~9 之间的一个数字,且 a ≠ 0 a\neq 0 a=0 如果
∣ x − x ∗ ∣ ≤ 1 2 × 1 0 k − n |x-x^*|\leq\frac{1}{2}×10^{k-n} xx21×10kn则称 x x x近似 x ∗ x^* x 有n 位有效数字

数值算法的设计原则

1.简化计算步骤,减少运算次数

2.避免两个相近的数相减

3.防止大数吃小数

4.避免用绝对值恒效的数用作除数

5.采用数值稳定性好的算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值