MIT线性代数Linear Algebra公开课笔记 第九讲 线性相关性、基、维数(lecture 9 Independence, Basis and Dimension)

本节是Gilbert Strang的MIT线性代数Linear Algebra公开课中【第九讲 线性相关性、基、维数(lecture 9 Independence, Basis and Dimension)】的笔记,参考他在 MIT Linear Algebra课程网站上公开分享的 lecture summary (PDF) & Lecture video transcript (PDF)等文档,整理笔记如下,笔记中的大部分内容是从 MIT Linear Algebra课程网站上的资料中直接粘贴过来的,本人只是将该课程视频中讲述的内容整理为文字形式,前面的章节可在本人的其他博客中找到(此处戳第一讲第二讲第三讲第四讲第五讲第六讲第七讲第八讲),后面的章节会按照视频顺序不断更新~

lecture 9 Independence, Basis and Dimension

1 线性无关(Linear independence)

Independence是Linear independence的简称;

1.1 定义

Vectors x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn are linearly independent (or just independent) if no combination gives the zero vector(except the zero combination), that is, the combination c 1 x 1 + c 2 x 2 + ⋯ + c n x n = 0 c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0 c1x1+c2x2++cnxn=0 only when c 1 , c 2 , . . . , c n c_1, c_2, ..., c_n c1,c2,...,cn are all 0 0 0 . When those vectors are the columns of A A A , the only solution to A x = 0 Ax = 0 Ax=0 is x = 0 x = 0 x=0 .

1.2 判定是否线性无关

若矩阵 A A A m × n m×n m×n ( m < n m<n m<n ),则方程组的未知数个数 > > > 方程个数,由于一共 n n n 个变量,而主元最多只有 m m m 个,故至少存在 n − m n-m nm 个自由变量,因此,零空间中包含非零向量,即方程组 A x = 0 Ax=0 Ax=0 含有非零解;求解 A x = 0 Ax=0 Ax=0 方法:按行消元,确定自由变量,对自由变量取非零值(如 1 1 1 ),然后回代求解主变量的值,至此求出 A x = 0 Ax=0 Ax=0 的一个解,且是非零解,此时矩阵 A A A 的各列对应的组合结果为 0 0 0,且组合系数(即为非零解)非零,故 A A A 的各列是相关的(dependent)。

综上,可以将需要判断相关性的向量( v 1 , v 2 , . . . , v n v_1, v_2, ..., v_n v1,v2,...,vn )放到一个矩阵中,即当 v 1 , v 2 , . . . , v n v_1, v_2, ..., v_n v1,v2,...,vn 是矩阵 A A A 的各列时,如果他们是线性无关的(矩阵 A A A 的各列线性无关),则矩阵 A A A 的零空间中只有零向量 N ( A ) = { 0 } N(A)=\{0\} N(A)={0},且 rank ( A ) = n \text{rank}(A)=n rank(A)=n (没有自由变量);如果零空间中存在非零向量,那么他们就是相关的,此时 rank ( A ) < n \text{rank}(A)<n rank(A)<n (有自由变量)。

解存在的原因:一定存在自由变量(至少一个)

一般说一组向量线性无关,不说矩阵是线性无关的。我们感兴趣的是矩阵的各列是否相关,如果零空间 N ( A ) N(A) N(A) 中存在非零向量,那么该矩阵的各列相关。

Two vectors are independent if they do not lie on the same line. Three vectors are independent if they do not lie in the same plane.

Example 1:

  1. 假设二维空间中的两个向量: v 1 = v v_1=v v1=v v 2 = 2 v v_2=2v v2=2v ,他们是相关的(dependent),因为 2 v 1 − v 2 = 0 2v_1-v_2=0 2v1v2=0 ,即存在非零组合使结果为 0 0 0

  2. 假设二维空间中的两个向量: Cannot read property 'type' of undefinedCannot read property 'type' of undefined ,他们是相关的,因为他们的组合 x v 1 + y v 2 = 0 xv_1+yv_2=0 xv1+yv2=0 x x x 一定为 0 0 0 ,而 y y y 为任意值。

    如果向量组中包含了一个零向量,那么这组向量就是相关的。

  3. 假设二维空间中的两个向量如下图,可见任何 v 1 v_1 v1 v 2 v_2 v2 的组合都无法得到零向量(除了零组合),故他们是无关(independence)的。
    在这里插入图片描述

    如果在图中加入向量 v 3 v_3 v3 如下图,此时是在二维空间或在一个平面里随意的画出三个向量,则他们是相关的。

    因为如果构造一个 2 × 3 2×3 2×3 的矩阵 A A A (它的三列分别为 v 1 , v 2 , v 3 v_1, v_2, v_3 v1,v2,v3 ),则该矩阵对应的线性方程组一定存在自由变量,故存在非零的 c 1 , c 2 , c 3 c_1, c_2, c_3 c1,c2,c3 来代替未知数 x x x ,使得对应的线性组合结果为零向量,即构成 A x = 0 Ax=0 Ax=0 。(相当于从原点出发,途经某倍的 v 1 v_1 v1 , 某倍的 v 2 v_2 v2 和某倍的 v 3 v_3 v3 , 最终回到原点) 。
    在这里插入图片描述

2 “生成”空间(Spanning a space)

——向量组生成或展开(span)一个空间(spanning a space),是什么意思?

——Vectors v 1 , v 2 , … , v k v_1, v_2, \dots, v_k v1,v2,,vk span a space means: the space consists of all combinations of those vectors.

对于一个向量组,他们能够生成一个空间。如果给出一个向量组,并令 S S S 为他们生成的空间,则意味着: S S S 包含该向量组所有的线性组合,且 S S S 是包含这些向量的空间中最小的一个;因为任何包含这些向量的空间,必须包含这个向量组的线性组合,如果仅仅包含这些组合,我们就得到最小的一个空间,这个空间就是向量组的生成空间。

将 “把向量组的所有线性组合的结果放到一个空间里面” 简称为 “生成” 。

例如,对于矩阵的列空间,相当于找到了矩阵的列的所有线性组合,矩阵的列向量生成了列空间,这些列可能相关,也可能无关。

3 基&维数(Basis and dimension)

3.1 基

我们最关心的是既能生成空间,本身又是无关的向量组,即向量的个数必须适当,如果个数不足,则无法生成需要的空间,若个数太多,则他们不是线性无关的,故提出“基”的概念,它包含的向量个数不多不少。

3.1.1 定义

A basis(基) for a vector space is a sequence of vectors v 1 , v 2 , . . . , v d v_1, v_2, ..., v_d v1,v2,...,vd with two properties:

  1. v 1 , v 2 , . . . , v d v_1, v_2, ..., v_d v1,v2,...,vd are independent;
  2. v 1 , v 2 , . . . , v d v_1, v_2, ..., v_d v1,v2,...,vd span the vector space.

The basis of a space tells us everything we need to know about that space.

Example 2: R 3 \mathcal{R}^3 R3

  1. One basis for R 3 \mathcal{R}^3 R3 is { [ 1 0 0 ] , [ 0 1 0 ] , [ 0 0 1 ] } \left\{\left[\begin{array}{l}{1} \\ {0} \\ {0}\end{array}\right],\left[\begin{array}{l}{0} \\ {1} \\ {0}\end{array}\right],\left[\begin{array}{l}{0} \\ {0} \\ {1}\end{array}\right]\right\} 100,010,001 (这不是唯一的一组基),他们线性无关(就像 x 、 y 、 z x、y、z xyz 轴),且
    c 1 [ 1 0 0 ] + c 2 [ 0 1 0 ] + c 3 [ 0 0 1 ] = [ 0 0 0 ] c_{1}\left[\begin{array}{c} {1} \\ {0} \\ {0} \end{array}\right]+c_{2}\left[\begin{array}{c} {0} \\ {1} \\ {0} \end{array}\right]+c_{3}\left[\begin{array}{c} {0} \\ {0} \\ {1} \end{array}\right]=\left[\begin{array}{c} {0} \\ {0} \\ {0} \end{array}\right] c1100+c2010+c3001=000
    is only possible when c 1 = c 2 = c 3 = 0 c_1 = c_2 = c_3 = 0 c1=c2=c3=0 . These vectors span R 3 \mathcal{R}^3 R3 . 当他们构成矩阵各列,则构成单位阵,而单位阵的零空间只有零向量,因此这些列向量线性无关。

  2. 由于这组基不是唯一一组,故可以举出另一组基:

    • 如果是 [ 1 1 2 ] , [ 2 2 5 ] \left[\begin{array}{l}{1} \\ {1} \\ {2}\end{array}\right],\left[\begin{array}{l}{2} \\ {2} \\ {5}\end{array}\right] 112,225 ,他们虽然线性无关,但是不能生成 R 3 \mathcal{R}^3 R3 ,因为他们生成的空间是 R 3 \mathcal{R}^3 R3 中的一个平面,故他们是平面的一组基,但是他们不能构成 R 3 \mathcal{R}^3 R3 的基。

    • 如果再增加一个向量: [ 3 3 7 ] \left[\begin{array}{l}{3} \\ {3} \\ {7}\end{array}\right] 337 ,这个是不可以的,因为他与前两个向量相关(他是前两个向量的和,他们三个共面),因此他们三个生成的仍然是那个平面;另外,由于他们相关,故不能构成一组基;因此,需要取不在此平面上的任意向量;

    • 如果是取 [ 3 3 8 ] \left[\begin{array}{l}{3} \\ {3} \\ {8}\end{array}\right] 338

      ——如何检验是否可以?(如何知道他们是否能构成基?)

      ——可以将他们作为矩阵的列向量构成一个矩阵,然后对该矩阵进行消元和行变换,看是否有自由变量,是否列都是主列;

      ——他们是否能够构成基?

      ——不可以,因为他们构成的矩阵有两个相同行,即会出现零行,因此这三个向量不是线性独立的,故不能;另外,现在这三个列向量构成的是 3 × 3 3×3 3×3 的方阵,方阵必须可逆,其列才能组成基。

若空间 R n \mathcal{R}^n Rn 中的 n n n 个向量要构成基,那么以这 n n n 个向量为列的 n × n n×n n×n 方阵必须是可逆的(invertible matrix)。

无关的所有列向量正好生成矩阵列空间,他们无关,所以是列空间的基。

3.1.2 特点

基不唯一,任取某可逆 3 × 3 3×3 3×3 矩阵,其列都是 R 3 \mathcal{R}^3 R3 的基,也就是:只要矩阵可逆,其列空间就是 R 3 \mathcal{R}^3 R3

如果是空间 R 3 \mathcal{R}^3 R3 ,则基向量的个数是 3 3 3 ;如果是空间 R n \mathcal{R}^n Rn ,那么基向量的个数就是 n n n ;某矩阵的列空间或者零空间,或任意形状的空间,他们都有相同的性质:虽然基有很多组,但所有基中的向量个数都是一样的

3.2 维数

一个空间对应的基有很多组,但是每一组中的向量个数都是相同的,而基中的向量的个数就是该空间的维数。Given a space, every basis for that space has the same number of vectors; that number is the dimension of the space.

3.3 总结

四个定义:

线性无关:非零线性组合不为 0 0 0

生成:所有的线性组合

基:一组无关的向量,并生成空间

空间的维数:基向量的个数(所有基的向量个数都是一样的)

4 列空间和零空间的基(Bases of a column space and nullspace)

4.1 列空间的基(Bases of a column space)

如果你知道所处理的空间的维数(如列空间的维数 dim C(A) = 2 \text{dim C(A)} =2 dim C(A)=2 ),即确定了所要找的线性无关的向量的数目(基向量的数目)( 即 2 2 2 ),找到这些向量后,他们就会是一组基。

矩阵 A A A 的秩 = 主列的数目 = 列空间的维数(dimension of C(A) \text{C(A)} C(A)

注意:不是矩阵 A A A 的维数,而是 A A A 的列空间的维数;同理,不会说是列空间的秩,因为只有矩阵才有秩;故维数只是对应空间来说,而秩是对于矩阵来说,不能混淆。

Example 3:
A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] A=\left[\begin{array}{llll} {1} & {2} & {3} & {1} \\ {1} & {1} & {2} & {1} \\ {1} & {2} & {3} & {1} \end{array}\right] A=111212323111

  1. ——他们能生成矩阵的列空间吗?

    ——能,这就是列空间的定义。

  2. ——他们是列空间的基吗?

    ——不是,因为他们线性相关(后两列与前两列相关),矩阵的零空间内不只有 0 0 0 ,还有非零向量,如 [ − 1 − 1 1 0 ] \left[\begin{array}{r}{ -1} \\ {-1} \\ { 1} \\ {0}\end{array}\right] 1110

  3. ——为这个矩阵的列空间找一组基?

    ——答案有很多,最简单的是:第一列和第二列;因为虽然后两列与前两列相关,但是前两列是独立的,这两列是主列,故他们能构成列空间 C ( A ) C(A) C(A) 的一组基。另外, rank ( A ) = 2 \text{rank}(A)=2 rank(A)=2

  4. ——找出这个列空间的另一组基?

    ——可以是:列一和列三,或者是列二和列三,或者是列二和列四;如果需要找出不是由这些列组成的基,可以是 [ 2 2 2 ] \left[\begin{array}{llll} {2} \\ {2} \\ {2} \end{array}\right] 222 [ 7 5 7 ] \left[\begin{array}{llll} {7} \\ {5} \\ {7} \end{array}\right] 757 等,他们是线性无关的,而且数目也刚好是 2 2 2

4.2 零空间的基(Bases of nullspace)

零空间的维数 = 自由变量的个数 = n − r n-r nrKaTeX parse error: Expected '}', got '#' at position 18: …ext{dim N(A) = #̲free variables}…

n n n 列中有 r r r 个是主列, n − r n-r nr 是自由列和自由变量的个数。

零空间的向量告诉我们:怎样组合矩阵的列向量会得到零向量,即怎样这些列才会线性相关。

矩阵 A A A 的列向量相关,则零空间 N ( A ) N(A) N(A) 包含非零向量。

Example 4:

在Example 3中已知,矩阵 A A A 的零空间中有 [ − 1 − 1 1 0 ] \left[\begin{array}{r}{-1} \\ {-1} \\ {1} \\ {0}\end{array}\right] 1110 ,但是这不是一组基,因为他生成不了零空间,在零空间内还有其他向量,如 [ − 1 0 0 1 ] \left[\begin{array}{r} {-1} \\ {0} \\ {0} \\ {1}\end{array}\right] 1001 ,这两个向量是 A x = 0 Ax=0 Ax=0 的special solutions(对应选择后两个变量为自由变量,赋予他们 1 、 0 1、0 10 0 、 1 0、1 01 得到的结果)。

——这两个special solutions是零空间的一组基吗?(零空间是由这两个向量的所有组合构成的吗?)

——是。零空间的维数: N(A) = 4 − 2 = 2 \text{N(A)}=4-2=2 N(A)=42=2 ,故这两个special solutions构成零空间的一组基。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值