GNN学习笔记(四) 用于节点分类的GNN

本文介绍了节点分类问题及其在GNN中的应用,详细阐述了有监督学习和无监督学习的GNN网络结构,包括GCN、GAN、VGAE等。同时,探讨了GNN中的过平滑问题及其解决方案PairNorm。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本篇学习笔记对应教材GNN基础/前沿/应用的第四章内容。本章首先给出了节点分类的定义,然后从有监督学习和无监督学习两大分类分别介绍了用于节点分类的GNN的典型网络的基本结构。最后,介绍了影响GNN网络性能的过平滑问题,并给出了一种解决方案。


一、背景和问题定义

1.节点分类问题的定义

节点分类是将节点分类到几个已经定义好的类别中。所以用于节点分类的GNN网络学习的是节点的表达(node representation),在后续章节中会介绍形成图表达的GNN。

2.问题的符号定义

在这里插入图片描述
如上图,假设图G中共有N个节点,则记邻接矩阵为A,是一个N×N维的矩阵;节点参数矩阵记为X,其中C表示一个节点有C个参数;GNN网络的层数为K;第K层的节点表达记为Hk,其中,F表示每一个节点需要用F维表达。

3.GNN的一种分类方式

在本章中,我们将GNN分为有监督学习方法(supervised approaches)和无监督方法(unsupervised approaches)两类。在第二部分和第三部分中将分别介绍一些典型的有监督学习和无监督学习的GNN网络。

二、有监督学习的GNN

1.GNN的基本结构

记初始的节点表达为 H 0 = X H _0 =X H0=X,在每一层中要完成两项主要工作:
(1)聚合(Aggregate): 聚合每个节点邻居的信息
(2)组合(Combine): 将聚合后的邻居信息与节点百年身的信息组合起来,形成节点的当前表示。
两项工作的数学符号表示如下。
在这里插入图片描述
其中 N ( v ) N(v) N(v)是第u个节点的所有邻居的集合。第K层的节点表达 H K H^K HK为最终的节点表达。
当得到最终节点表达 H K H^K HK后可以利用其进行一些下行操作。例如,利用Softmax层来进行节点的分类。
y ^ = S o f t m a x ( W H v T ) \hat{y} = Softmax(WH{_v ^T}) y^=Softmax(WHvT)
其中,W是一个|L|×F维的矩阵,|L是|输出空间中标签的个数。
在有标签的情况下,可以通过最小化损失函数来训练模型:
O = 1 / n l ∑ i = 1 n l l o s s ( y i ^ , y i ) O =1/n_l \sum_{i=1} ^{n_l}{loss(\hat{y{_i}},y_i)} O=1/nli=1nlloss(yi^,yi)
loss()为定义的损失函数,可以为CE(),或MSE() n l n_l nl为有预测标签的节点个数, y i y_i yi是节点的真实分类。

2.图卷积网络(GCN)

由于其简单有效,GCN是目前最流行的图神经网络。在GCN中,每一层的节点表达依照下式更新。
H k + 1 = σ ( D ~ − 1 2 A ~ D ~ − 1 2 H k W k ) H^{k+1}=\sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^kW^k) Hk+1=σ(D 21A D 21HkWk)
其中, A ~ = A + I \widetilde{A}=A+\textbf{I} A =A+I是加入了自连接的邻接矩阵,可以在更新节点表达的同时就结合节点自身特征。 D ~ = Σ j A ~ i j \widetilde{D}=\Sigma{ {_j}\widetilde{A}_{ij}} D

### 图神经网络 (GNN) 学习资源 对于希望深入了解图神经网络(Graph Neural Networks, GNNs)的学习者来说,有多种高质量的教程、论文和技术博客可以作为参考资料。 #### 论文阅读 一些重要的研究工作奠定了现代GNN的基础。例如,《DeepWalk: Online Learning of Social Representations》探讨了如何通过随机游走的方式捕捉社交网络中的节点特征[^1];《node2vec: Scalable Feature Learning for Networks》则进一步扩展了这一思路,提出了更灵活的方法来生成节点嵌入表示;而《Semi-Supervised Classification with Graph Convolutional Networks》引入了一种基于卷积操作处理图形数据的新框架——GCN(Graph Convolutional Network),它能够有效地利用未标记的数据进行半监督分类任务。 #### 教程视频 除了学术文章外,在线教育平台也提供了许多易于理解的教学材料。比如B站上有一个名为“GNN从入门到精通”的系列课程,该课程由浅入深地讲解了有关GNN的知识点,并配有实际案例分析和编程练习[^3]。 #### 技术文档与笔记整理 为了帮助初学者更好地掌握理论概念并应用于实践当中,“【GNN】图神经网络学习小结and笔记汇总”这份总结性的资料非常有价值。这里不仅包含了对核心算法原理详尽解释的文字描述,还有配套代码实现供读者参考学习[^2]。 ```python import torch from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = GCNConv(dataset.num_node_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) ``` 上述Python代码片段展示了如何使用PyTorch Geometric库构建简单的两层GCN模型来进行节点分类预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值