Stable Diffusion+ControlNet+Lora 指导AI+艺术设计的WebUI全流程使用教程


设计师们往往对于新出的绘画工具上手比较艰难,本文针对目前比较火热的Stable Diffusion+ControlNet指导AI艺术设计的工具使用进行全面讲解。很多人会有预感,未来要么设计师被图形学程序员取代,要么会使用AI工具的设计师取代传统设计师,2023年开始,AI辅助设计甚至主导设计已经成了司空见惯的现象。

软硬件环境:
OS: Ubuntu 20.04(Stable Diffusion开发需要Linux 环境,纯使用Web工具也可在WIndows下运行)
CPU: AMD5800 8core 16Thread
GPU: NVIDIA RTX 3090 * 2
RAM: 16GB * 4
Pytorch-gpu=1.13
CUDA=11.7

一. 背景知识

1.1 Stable Diffusion背景知识

1.1.1 安装stable-diffusion-webui

由于笔者的系统为Linux ,因此需要按照官网(https://github.com/AUTOMATIC1111/stable-diffusion-webui)的操作进行以下配置:

# Debian-based:
sudo apt install wget git python3 python3-venv
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)

下载好stable-dffusion-webui后,还需要单独安装gfpgan 包(https://gitcode.net/mirrors/TencentARC/GFPGAN?utm_source=csdn_github_accelerator),安装方式如下:

git clone https://github.com/TencentARC/GFPGAN.git
cd GFPGAN
# Install basicsr - https://github.com/xinntao/BasicSR
# We use BasicSR for both training and inference
pip install basicsr

# Install facexlib - https://github.com/xinntao/facexlib
# We use face detection and face restoration helper in the facexlib package
pip install facexlib

pip install -r requirements.txt
python setup.py develop

# If you want to enhance the background (non-face) regions with Real-ESRGAN,
# you also need to install the realesrgan package
pip install realesrgan

安装好后将GFPGAN 目录放在stable-diffusion-webui 目录下,同时改名为gfpgan ,注意,这里如果不修改名字这个包将不可用。
在这里插入图片描述
然后运行以下命令并等待自动安装好其他环境依赖包:

./webui.sh 

这里安装requirements.rxt中的内容可能需要等待一段时间:
在这里插入图片描述

1.2 ControlNet 背景知识

二. 使用方法

目前开放AI+艺术设计工具的方式多为Web交互界面,接入互联网后调用AI公司内部的云GPU服务器,服务器计算后返回结果给用户。其大多有次数或功能限制,或者收费较高。本部分讲述如何利用本地GPU工作机进行Web交互式AI绘图。

2.1 环境配置

下载以下四个源代码/模型文件:

  1. 主要使用的SD的Web版本(第三方,非官方):

    stable-diffusion-webui

  2. 下载SD官方的v1.5模型:
    runwayml/stable-diffusion-v1-5

  3. 下载ControlNet的Web版本(第三方,非官方):
    Mikubill/sd-webui-controlnet

  4. 下载ControlNet官方发布的模型:
    lllyasviel/ControlNet/tree/main/models

下载好后首先进入stable-diffusion-webui 中,注意将 Mikubill/sd-webui-controlnet 的源代码放在 extensions 目录下面:

在这里插入图片描述
将下载好的ControlNet源代码目录中的models 复制到extensions 下面:

在这里插入图片描述

2.2 运行WebUI

在命令行中执行脚本(注意不要使用sudo命令,否则会不成功):

./webui.sh 

接下来脚本自动进行环境安装和模型加载。加载完毕后会返回一个本地Web网址,访问这个网址可以进行本地浏览器界面交互:
在这里插入图片描述
复制url,打开浏览器,即可得到带有ControlNet功能的SD的WebUI交互界面,可以利用界面上面的组件进行本地的快速交互设计开发。
在这里插入图片描述

三. 背景知识

3.1 Stable Diffusion参数详解

Sampling method: 采样方法

Sampling steps:采样迭代步数

Restore faces: 面容修复

Tiling: 生成平铺纹理

Highres.fix: 高分辨率修复

Firstpass width: 一开始的低分辨率的宽

Firstpass height: 一开始的低分辨率的高

CFG scale: 数值越小,AI多样性越多,越大限制越多

Seed: 种子数

Variation seed: 在原来种子数的基础之上的子种子数

Denoising strength:跟原来图片的差距大小

3.2 ControlNet 参数详解

  1. 2D重绘
    Canny Edge
    HED Boundary
    M-LSD Lines
    Faske Scribbles

  2. 专业领域
    Depth Map
    Normal Map
    Semantic Segmentation
    Human Pose

四. 定制化技巧

4.1 参数技巧

深度真人LoRa模型训练建议:
使用和LoRa一样的底模(大模型); 最好使用和LoRa作者相同的参数;正确设置loRa的权重(0.8~0.9, <1);提示词中要加入触发词;LoRa不是越多越好。
1、训练总数:建议50张图数据集深度训练15000次左右,更大数据集可用Dadaptation优化器测试最佳总步数。
2、训练轮次:建议10/5次预设,每个图建议单轮训练20~30次。
3、训练分辨率:建议768x1024,根据电脑显存调整。
4、训练源模型:建议chilloutmix_NiPnjnedFp32Fix, 1.5模型。
5、Text Encoder learning rate (文本编码器学习率):主要影响鲁棒性、泛化性和拟合度,过低不利于更换特征。
6、Unet learning rate (Unet学习率):主要影响模型像与不像,影响lost率和拟合度,不拟合加大,过拟合减小。
7、文本编码器学习率和Unet学习率的关系:没有必然的1/5~1/10倍率关系、庞大数据集下Unet甚至可以低过Text。
8、Network Rank (Dimension”网络大小):强化训练细节,建议128〜192,128以上增加提升相对不明显。
9、Network Alpha (网络Alpha):建议96以上,弱化训练细节,有正则化效果,可与Dim同步增加。
10、让AI训练AI:首发训练采用Dadaptation,所有学习率均设为1。
1k手动训练方法:建议用AadmW优化器,可以通过调整学习率获得很像与易用性的平衡。
12、lost率控制:不是越低越好,越低模型越拟合,但模型也越难更换特征,甚至会影响动作和表情。
13、Lion优化器:不建议用在深度训练中,太快拟合虽然能很像,但是造成泛用性差。
14、本地深度训练方法:可以用远程操作软件监控,训练过程中发现学习率不合适远程修改。

五. 参考来源

如何训练一个非常像的真人Lora模型(深度探讨)

[2023最新]LORA安装和训练指南

还搞不定lora训练集吗?干货分享+打标讲解

<think>好的,用户现在问的是关于如何使用Stable Diffusion WebUI。之前他们提到过在模型库下载Flux模型并加载到Chatbot或Dify来实现画图,但当时我解释说Flux不适合,并建议使用Stable Diffusion这样的专用模型。现在用户转向了Stable Diffusion,所以需要详细指导他们如何使用WebUI。 首先,我需要确定用户对Stable Diffusion的了解程度。可能他们是新手,所以需要从基础开始。用户可能已经知道SD的基本概念,但需要操作指南。接下来,要考虑他们的使用场景:是个人创作、商业用途,还是研究?不同的场景可能需要不同的配置建议。 然后,用户的需求可能包括安装步骤、界面介绍、基本操作和高级功能。可能需要分步骤解释,确保每个部分都清晰。另外,用户可能遇到安装问题,比如依赖项错误或硬件配置不足,所以需要给出常见问题解答。 还要考虑用户的操作系统,Windows、Mac还是Linux?安装步骤可能有所不同,但WebUI通常推荐Windows,所以可能需要以Windows为例。硬件方面,用户是否有足够的GPU显存?至少需要4GB,推荐8GB,这点需要强调。 此外,用户可能对模型和插件感兴趣,比如如何下载不同的模型,安装插件扩展功能。需要推荐一些常用的模型和插件,比如ChilloutMix、ControlNet等,并提供下载地址。 最后,安全问题也很重要,比如生成内容是否符合法律法规,需要提醒用户注意。可能还需要提到商业使用的授权问题,避免侵权。 总结下来,回答的结构应该是:安装准备、安装步骤、界面详解、基本使用、高级功能、常见问题、注意事项。每个部分用简洁的语言和示例,帮助用户一步步操作。同时,使用代码块和项目符号列表,使信息更易读。还要注意提醒用户硬件要求和法律问题,确保他们安全合法地使用工具。</think>以下是Stable Diffusion WebUI的详细使用指南,包含安装配置、核心功能及进阶技巧: --- ### 一、安装准备 ```mermaid graph TD A[硬件要求] --> B[Windows/Mac/Linux] A --> C[GPU显存≥4GB] A --> D[推荐RTX 3060+] E[软件依赖] --> F[Python 3.10.6] E --> G[Git] E --> H[FFmpeg] ``` 1. **环境检查** - 显存验证:`nvidia-smi`查看显存容量(N卡用户) - 存储空间:至少15GB可用空间 - 虚拟内存:建议设置32GB以上(Windows系统) --- ### 二、安装步骤(Windows示例) ```bash # 1. 克隆仓库 git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git # 2. 安装依赖(国内镜像加速) set PIP_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple pip install -r requirements.txt # 3. 下载基础模型(1.5版本示例) wget https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors mv v1-5-pruned-emaonly.safetensors models/Stable-diffusion/ ``` --- ### 三、界面详解 ![WebUI界面布局](https://example.com/sd-webui-layout.png) 1. **核心功能区**: - Prompt输入框:正向提示词(建议用英文) - Negative Prompt:排除元素(如"low quality, blurry") - Sampling Steps:迭代次数(20-30为常用值) 2. **参数调节区**: ```python { "CFG Scale": 7, # 提示词相关性(7-12) "Seed": -1, # -1代表随机 "Width/Height": 512, # 生成分辨率 "Batch Count": 4 # 生成批次 } ``` --- ### 四、基础使用流程 1. **文字生成图片**: - 正向提示示例:`(masterpiece), 1girl, red dress, cherry blossoms` - 反向提示示例:`(deformed fingers), bad anatomy` 2. **图片优化技巧**: - 使用括号强调权重:`(sunset:1.3)` - 分层描述:`[background: beach], [foreground: girl]` - 艺术家风格:`by Makoto Shinkai and Studio Ghibli` --- ### 五、高级功能 1. **ControlNet插件**: ```mermaid graph LR A[上传线稿] --> B[启用ControlNet] B --> C[选择预处理器] C --> D[选择模型] D --> E[生成上色图] ``` - 常用模型:`canny_edge`, `openpose`, `depth` 2. **LoRA模型应用**: - 放置路径:`models/Lora` - 触发语法:`<lora:modelname:0.8>` --- ### 六、常见问题解答 | 问题现象 | 解决方案 | |---------|----------| | 显存不足 | 降低分辨率/使用`--medvram`启动参数 | | 生成黑图 | 检查模型完整性/更新显卡驱动 | | 中文乱码 | 安装中文语言包/使用双语提示 | --- ### 七、注意事项 1. 法律合规:禁止生成侵权/违法内容 2. 商业授权:注意模型使用协议(如NovelAI需商业许可) 3. 硬件安全:连续生成时监控GPU温度(建议<85℃) 可通过启动脚本`webui-user.bat`添加参数优化体验: ```bash set COMMANDLINE_ARGS=--xformers --enable-insecure-extension-access ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值