E[d2]=E[(s(k)-se(k))2]
sek=∑Ni=1ais(k-i)
dE[d2]/dai=0 i=0,1,2…
联立,有
E[2(s(k)-∑ams(k-m))s(k-i)]=0
有E[s(k)s(k-i)]=E[∑ams(k-m)s(k-i)]
即E[s(k)s(k-i)]=∑E[ams(k-m)s(k-i)]
即R(i)=∑N-im=-(i+1)amR(|m|)
最小二乘法
最小二乘法是勒让德在19世纪发现的
目标函数=∑(理论-观测)2
即测量值减去拟合函数,然后平方求和,我们的目标就是找到一个使这个目标函数最小的拟合函数(导数为0时就是最小值),即为真值(如果误差是随机的就应该上下波动在真值附近),这一点也挺符合我们的直觉。
求个导哈
即d目标函数/d理论=2∑(理论-观测)=0
即∑观测/观测个数=理论
emmmmm听起来好像是 算术平均来着???
高斯的思考
高斯通过了概率论去思考这个问题。他认为误差最终会形成一个概率分布,后来解出来的这个概率分布就是…没错,正态分布。
高斯他老人家是怎么解的呢?
设一