深度学习(三)—— 线性回归的概念

目录

一. 线性回归

1. 线性模型

2.损失函数 —— 衡量预估质量​编辑

3.训练数据

4.参数学习

5.显式解

二. 梯度下降法

1.梯度下降

2.学习率 

3.小批量随机梯度下降

4.批量大小的选择


一. 线性回归

  • 线性回归是对n维输入的加权,外加偏差
  • 使用 平方损失 来衡量预测值和真实值之间的偏差
  • 线性回归有 显示解
  • 线性回归可以看做是 单层神经网络

1. 线性模型

 

2.损失函数 —— 衡量预估质量

 

3.训练数据

 

4.参数学习

 

5.显式解

 

二. 梯度下降法

  • 深度学习通常解决没有显示解的问题,即通过优化方法求得数值解
  • 梯度下降法通过不断沿着反梯度方向更新参数进行求解
  • 小批量随机梯度下降 是深度学习默认的求解方法
  • 两个重要的 超参数:批量大小、学习率

1.梯度下降

2.学习率 

3.小批量随机梯度下降

4.批量大小的选择

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值