目录
一. 线性回归
- 线性回归是对n维输入的加权,外加偏差
- 使用 平方损失 来衡量预测值和真实值之间的偏差
- 线性回归有 显示解
- 线性回归可以看做是 单层神经网络。
1. 线性模型
2.损失函数 —— 衡量预估质量
3.训练数据
4.参数学习
5.显式解
二. 梯度下降法
- 深度学习通常解决没有显示解的问题,即通过优化方法求得数值解
- 梯度下降法通过不断沿着反梯度方向更新参数进行求解
- 小批量随机梯度下降 是深度学习默认的求解方法
- 两个重要的 超参数:批量大小、学习率
1.梯度下降
2.学习率
3.小批量随机梯度下降
4.批量大小的选择