信号与系统笔记05:连续时间信号与系统复频域分析

一、拉普拉斯变换

1. 拉普拉斯变换

F(s) = \int_{-\infty}^{\infty} f(t) e^{-st} dt

f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty} ^{\sigma + j \infty} F(s) e^{st} ds

s = \sigma + j w

2. 基本信号的拉普拉斯变换

f(t)F(s) = \int_{-\infty}^{+\infty}f(t)e^{-st} dt收敛域
\delta(t)1整个s平面
u(t)\frac{1}{s}Re[s] > 0
e^{-\alpha t}u(t)\frac{1}{s+\alpha}Re[s] > -\alpha
t^nu(t)
sin(wt) u(t)
cos(wt)u(t)
e^{-\alpha t} sin(wt) u(t)
e^{-\alpha t} cos(wt) u(t)
t^n e^{-\alpha t} u(t)

二、拉普拉斯变换的性质

特性信号拉普拉斯变换
f(t),f_1(t),f_2(t)F(s),F_1(s),F_2(s)
时移f(t-t_0)F(s)e^{-s t_0}
压扩f(at)\frac{1}{a}F\left( \frac{s}{a} \right )
时间运算综合f(at-b)\frac{1}{a} F\left( \frac{s}{a} \right ) e^{-s \frac{a}{b}}
线性k_1f_1(t) \pm k_2f_2(t)k_1F_1(s) \pm k_2F_2(s)
时域微分\frac{d f(t)}{d t}sF(s) - f(0_{-})
时域积分\int_{-\infty}^{t} f(\tau) d\tau\frac{F(s)}{s}+\frac{f^{(-1)}(0_{-})}{s}
s域平移e^{s_0 t} f(t)F(s-s_0)
s域微分-tf(t)\frac{dF(s)}{ds}
s域积分\frac{f(t)}{t}\int_{s}^{\infty} F(\lambda) d \lambda
时域卷积f_1(t) \otimes f_2(t)F_1(s) F_2(s)
频域积分f_1(t)f_2(t)\frac{1}{2\pi j} F_1(s) \otimes F_2(s)
初值、终值

f(t)及其倒数的拉普拉斯变换存在,则

f(0_{+}) = \lim_{s \rightarrow \infty} sF(s)

\lim_{t \rightarrow \infty} f(t) = \lim_{s \rightarrow 0} sF(s)

三、拉普拉斯逆变换

求解F(s) = \frac{2s^2 + 3s +3}{ s^3 +6s^2 + 11s + 6}的拉普拉斯逆变换f(t)

F(s) = \frac{2s^2 + 3s +3}{ s^3 +6s^2 + 11s + 6} = \frac{2s^2 + 3s +3}{(s+1) (s+2) (s+3)} \\ = \frac{k_1}{s+1} + \frac{k_2}{s+2} + \frac{k_3}{s+3}

k_1 = (s+1) F(s) |_{s=-1} = 1

k_2 = (s+2) F(s)|_{s=-2} = -5

k_3 = (s+3) F(s)|_{s = -3} = 6

F(s) = \frac{1}{s+1} + \frac{-5}{s+2} + \frac{6}{s+3}

f(t) = \left[ e^{-t} - 5e^{-2t} + 6e^{-3t} \right ] u(t)

四、拉普拉斯变换与傅里叶变换的关系

1. Re[s] > 0(收敛轴位于s右半平面)

当极点位于s的右半平面时,信号必须由e^{-\sigma t}衰减因子进行衰减才能存在傅里叶变换,其自身不满足绝对可积的条件,相应的傅里叶变换不存在,因此不可以将s换做jw以得到不存在的傅里叶变换。

2. Re[s] < 0(收敛轴位于s左半平面)

当极点位于s的左半平面时,说明信号在乘以增长因子时都满足绝对可积的条件,相应的傅里叶变换存在,因此可以将s换做jw得到其傅里叶变换。

3. Re[s] = 0(收敛轴位于虚轴)

当极点位于虚轴之上时,从信号本身而言并不满足绝对可积的条件,但其傅里叶积分得到的无穷大是一种可以通过冲激函数\delta(w)来描述和界定的无穷大,其实际计算意义是通过其积分为有限值来体现的。虽然这类信号的傅里叶变换和拉普拉斯变换都存在,但其傅里叶变换中包含\delta(w)或其微分形式,显然不能通过s=jw由拉普拉斯变换获得其傅里叶变换。

当一个信号存在单边拉普拉斯变换时,若收敛域包含jw虚轴则一定存在傅里叶变换,且只需要将F(s)中的s换成jw即可;若jw虚轴为收敛域边界,其傅里叶变换也存在,且等于将F(s)中的s换成jw、再加上包含\delta(w)或其微分项部分;若jw虚轴既不在收敛域内也不在收敛边界上,则该信号的傅里叶变换不存在。

五、利用拉普拉斯变换求解连续时间系统响应

电路元件微分方程电流电压
电阻(R)u_R(t) = Ri_R(t)I_R(s) = \frac{U_R(s)}{R}U_R(s) = RI_R(s)
电感(L)u_L(t) = L \frac{di_L(t)}{dt}I_L(s) = \frac{U_L(s)}{sL} + \frac{i_L(0_{-})}{s}U_L(s) = sLI_L(s) - Li_L(0_{-})
电容(C)i_C(t) = C \frac{d u_C(t)}{d t}I_C(s) =CsU_C(s) - Cu_C(0_{-})U_C(s) = \frac{I_C(s)}{Cs} + \frac{u_C(0_{-})}{s}

六、系统函数

r(t) = e(t) \otimes h(t)

R(s) = E(s)H(s)

H(s) = \frac{R(s)}{E(s)}

七、S域系统稳定性判断

1. 系统稳定性与零、极点阶数的关系

H(s) = \frac{N(s)}{D(s)} = \frac{\sum_{i=0}^{i=m} b_i s^i}{\sum_{j=0}^{j=n} b_js^j}

基于系统激励与响应微分阶次关系的系统稳定的必要条件是:

(1)当m<n或m=n时,系统稳定;

(2)当m=n+1时,系统边界稳定;

(3)当m>n+1时,系统不稳定。

2. 由H(s)分母多项式的系数判断系统的稳定性

基于D(s)多项式系数判断系数稳定性的必要条件:

(1)D(s)多项式中所有系数均为正数或负数;

(2)D(s)多项式不缺项,或者缺全部的偶次项或奇次项;

若上述条件中有一条不满足,则系统不稳定。

3. 劳斯准则

判断以下系统是否稳定

H(s) = \frac{1}{2s^4 + 2s^3 + 4s^2 + 4s + 5}

1245
224
3\varepsilon5
4-\frac{10-4\varepsilon }{\varepsilon }0
55

\varepsilon与 -\frac{10-4\varepsilon }{\varepsilon }始终符号相反,故H(s)有两个位于S右半平面的极点,系统不稳定。

H(s) = \frac{1}{s^4 + 2s^3 + 8s^2 + 3s + 4}

1184
223
36.54
423/130
54

第一列全为正数,所以系统稳定。

八、复频域与频域相结合的系统特性分析

1. 利用H(s)零极点分布几何法确定H(w)特性

H(s) = k \frac{\prod_{j=1}^{m} (s-z_j)}{\prod_{i=1}^{n} (s-p_i)}

H(w) = H(s)|_{s=jw} = k \frac{\prod_{j=1}^{m} (jw-z_j)}{\prod_{i=1}^{n} (jw-p_i)} = k \frac{\prod_{j=1}^{j=m} N_j e^{j\psi_j}}{\prod_{i=1}^{i=n} M_i e^{j\theta_i}}

|H(w)| = k \frac{\prod_{j=1}^{m} N_j}{\prod_{i=1}^{n} M_i}

\varphi(w) = \sum_{j=1}^{m} \psi_{j} - \sum_{i=1}^{n} \theta_{i}

2. 全通系统

幅频特性为常数的稳定系统为全通系统,即|H(w)| = k

全通系统的零极点个数相同,且以虚轴为界左右对称分布。对于稳定的全通系统而言,其极点在S左半平面,故其零点一定在S右半平面。

对于稳定的全通系统,其相频特性\varphi (w)w的单调减函数,系统函数的相位变化为2n\pi(w=-\infty) \rightarrow 0 (w = \infty)

3. 最小相移系统

称零点位于左半闭平面(包括左半平面和虚轴)的稳定系统为最小相移系统。

4. 一般系统

任意一个稳定的线性时不变因果稳定系统都能够分解为一个全通系统与一个最小相移系统的级联。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值