一、拉普拉斯变换
1. 拉普拉斯变换
2. 基本信号的拉普拉斯变换
收敛域 | ||
---|---|---|
1 | 整个平面 | |
二、拉普拉斯变换的性质
特性 | 信号 | 拉普拉斯变换 |
---|---|---|
时移 | ||
压扩 | ||
时间运算综合 | ||
线性 | ||
时域微分 | ||
时域积分 | ||
域平移 | ||
域微分 | ||
域积分 | ||
时域卷积 | ||
频域积分 | ||
初值、终值 | 及其倒数的拉普拉斯变换存在,则 |
三、拉普拉斯逆变换
求解的拉普拉斯逆变换。
四、拉普拉斯变换与傅里叶变换的关系
1. (收敛轴位于右半平面)
当极点位于s的右半平面时,信号必须由衰减因子进行衰减才能存在傅里叶变换,其自身不满足绝对可积的条件,相应的傅里叶变换不存在,因此不可以将s换做jw以得到不存在的傅里叶变换。
2. (收敛轴位于左半平面)
当极点位于s的左半平面时,说明信号在乘以增长因子时都满足绝对可积的条件,相应的傅里叶变换存在,因此可以将s换做jw得到其傅里叶变换。
3. (收敛轴位于虚轴)
当极点位于虚轴之上时,从信号本身而言并不满足绝对可积的条件,但其傅里叶积分得到的无穷大是一种可以通过冲激函数来描述和界定的无穷大,其实际计算意义是通过其积分为有限值来体现的。虽然这类信号的傅里叶变换和拉普拉斯变换都存在,但其傅里叶变换中包含或其微分形式,显然不能通过由拉普拉斯变换获得其傅里叶变换。
当一个信号存在单边拉普拉斯变换时,若收敛域包含jw虚轴则一定存在傅里叶变换,且只需要将F(s)中的s换成jw即可;若jw虚轴为收敛域边界,其傅里叶变换也存在,且等于将F(s)中的s换成jw、再加上包含或其微分项部分;若jw虚轴既不在收敛域内也不在收敛边界上,则该信号的傅里叶变换不存在。
五、利用拉普拉斯变换求解连续时间系统响应
电路元件 | 微分方程 | 电流 | 电压 |
---|---|---|---|
电阻(R) | |||
电感(L) | |||
电容(C) |
六、系统函数
七、S域系统稳定性判断
1. 系统稳定性与零、极点阶数的关系
基于系统激励与响应微分阶次关系的系统稳定的必要条件是:
(1)当m<n或m=n时,系统稳定;
(2)当m=n+1时,系统边界稳定;
(3)当m>n+1时,系统不稳定。
2. 由H(s)分母多项式的系数判断系统的稳定性
基于D(s)多项式系数判断系数稳定性的必要条件:
(1)D(s)多项式中所有系数均为正数或负数;
(2)D(s)多项式不缺项,或者缺全部的偶次项或奇次项;
若上述条件中有一条不满足,则系统不稳定。
3. 劳斯准则
判断以下系统是否稳定
1 | 2 | 4 | 5 |
---|---|---|---|
2 | 2 | 4 | |
3 | 5 | ||
4 | 0 | ||
5 | 5 |
与 始终符号相反,故H(s)有两个位于S右半平面的极点,系统不稳定。
1 | 1 | 8 | 4 |
---|---|---|---|
2 | 2 | 3 | |
3 | 6.5 | 4 | |
4 | 0 | ||
5 | 4 |
第一列全为正数,所以系统稳定。
八、复频域与频域相结合的系统特性分析
1. 利用H(s)零极点分布几何法确定H(w)特性
2. 全通系统
幅频特性为常数的稳定系统为全通系统,即
全通系统的零极点个数相同,且以虚轴为界左右对称分布。对于稳定的全通系统而言,其极点在S左半平面,故其零点一定在S右半平面。
对于稳定的全通系统,其相频特性为的单调减函数,系统函数的相位变化为
3. 最小相移系统
称零点位于左半闭平面(包括左半平面和虚轴)的稳定系统为最小相移系统。
4. 一般系统
任意一个稳定的线性时不变因果稳定系统都能够分解为一个全通系统与一个最小相移系统的级联。