信号与系统(17)- 连续时间系统的复频域分析:拉普拉斯变换

傅里叶级数和傅里叶变换在处理信号时,可以将激励信号分解为一系列正弦函数,并且通过求解每个子信号的稳态响应,进而求解系统对激励激励信号的全响应。这样处理信号的方式称为频域分析,即将信号从频域的角度进行分析和处理。频域分析的好处是避免了时域分析中求解卷积积分,并且物理意义非常明确,引入了很多表征信号的物理量,如谐波、频率响应、带宽等,但是同时引入了傅里叶变换和反变换。而傅里叶变换也存在局限性:

  1. 傅里叶变换或傅里叶级数要求信号必须是绝对可积或收敛的信号,对于不收敛的信号,需要引入奇异函数,计算复杂。
  2. 傅里叶计算虽然避免了卷积运算,但是仍需要求解广义积分,即 ∫ − ∞ + ∞ ( ) d x \int_{-\infty}^{+\infty}()dx +()dx
  3. 傅里叶变换或级数只能求解系统的零状态响应。

为了解决上述的问题,引入了拉普拉斯变换,即复频域分析法。

1. 如何从傅里叶变换得到拉普拉斯变换?

傅里叶变换需要被积分函数收敛,即:
F ( j ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t \begin{aligned} F(j\omega)=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt \end{aligned} F(jω)=+f(t)ejωtdt
该积分需要收敛,才存在信号 f ( t ) f(t) f(t)的傅里叶变换。

为了使得信 f ( t ) f(t) f(t)收敛,人为地将信号 f ( t ) f(t) f(t)乘以一个收敛因子 e − σ t e^{-\sigma t} eσt,强行使得信号收敛,如下列信号:

信号1 f ( t ) = e α t ε ( t ) f(t) = e^{\alpha t}\varepsilon(t) f(t)=eαtε(t)

通过乘以收敛因子 e − σ t e^{-\sigma t} eσt,即:
f 1 ( t ) = f ( t ) ⋅ e − σ t = e ( α − σ ) t ε ( t ) f_1(t) = f(t)\cdot e^{-\sigma t}= e^{(\alpha -\sigma )t}\varepsilon(t) f1(t)=f(t)eσt=e(ασ)tε(t)
( α − σ ) < 0 (\alpha - \sigma)<0 (ασ)<0时,信号 f 1 ( t ) f_1(t) f1(t)将会收敛。

信号2 f ( t ) = e α t ε ( t ) + e β t ε ( − t ) f(t) = e^{\alpha t}\varepsilon(t)+e^{\beta t}\varepsilon(-t) f(t)=eαtε(t)+eβtε(t):

通过乘以收敛因子 e − σ t e^{-\sigma t} eσt,即:
f 1 ( t ) = f ( t ) ⋅ e − σ t = e ( α − σ ) t ε ( t ) + e ( β − σ ) t ε ( − t ) f_1(t) = f(t)\cdot e^{-\sigma t}= e^{(\alpha -\sigma )t}\varepsilon(t) +e^{(\beta -\sigma )t}\varepsilon(-t) f1(t)=f(t)eσt=e(ασ)tε(t)+e(βσ)tε(t)
( α − σ ) < 0 , 且 ( β − σ ) > 0 (\alpha - \sigma)<0,且(\beta-\sigma)>0 (ασ)<0(βσ)>0时,即 β > σ > α \beta >\sigma >\alpha β>σ>α时,信号 f 1 ( t ) f_1(t) f1(t)将会收敛。

因此,可以通过将原函数乘以收敛因子 e − σ t e^{-\sigma t} eσt,使其成为收敛函数,再使用傅里叶变换处理,即:
F 1 ( j ω ) = ∫ − ∞ + ∞ f 1 ( t ) e − j ω t d t = ∫ − ∞ + ∞ f ( t ) ⋅ e − σ t ⋅ e − j ω t d t = ∫ − ∞ + ∞ f ( t ) ⋅ e − ( σ + j ω ) t d t \begin{aligned} F_1(j\omega)&=\int_{-\infty}^{+\infty}f_1(t) e^{-j\omega t}dt \\&=\int_{-\infty}^{+\infty}f(t)\cdot e^{-\sigma t} \cdot e^{-j\omega t}dt \\&=\int_{-\infty}^{+\infty}f(t)\cdot e^{-(\sigma+j\omega) t}dt \end{aligned} F1(jω)=+f1(t)ejωtdt=+f(t)eσtejωtdt=+f(t)e(σ+jω)tdt
令: s = σ + j ω s=\sigma +j\omega s=σ+jω F 1 ( j ω ) = F ( s ) F_1(j\omega) = F(s) F1(jω)=F(s)
F ( s ) = ∫ − ∞ + ∞ f ( t ) ⋅ e − s t d t \begin{aligned} F(s)&=\int_{-\infty}^{+\infty}f(t)\cdot e^{-s t}dt \end{aligned} F(s)=+f(t)estdt
上式即拉普拉斯变换,记为:
L d { f ( t ) } = F ( s ) = ∫ − ∞ + ∞ f ( t ) ⋅ e − s t d t \begin{aligned} L_d\{f(t)\}=F(s)=\int_{-\infty}^{+\infty}f(t)\cdot e^{-s t}dt \end{aligned} Ld{ f(t)}=F(s)=+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值