为什么国内首发的大模型,反而不如新来的KIMI、豆包?

从我的观察来看,我认为一味的追求参数规模反而忽略真实的应用场景是一种本末倒置,摸清用户痛点并落实到实际的应用场景中,才是此轮大模型的“卷点”。Kimi和豆包更注重C端应用,更加懂得在差不多的时间节点中“扬长“与”避短”,现在看来,他们走的很稳,而且他们很会抓用户的心理

1.参数规模≠最终效果

很多国产大模型在发布之初,都热衷于强调自身的参数规模,似乎参数规模越大,就代表着模型的能力越强(有的直接对标ChatGPT,做一张表,横向纵向对比,得出一个超过ChatGPT的分值)。然而,大模型的能力,并非仅仅取决于参数规模,更取决于数据质量、训练方法、算法优化等多个方面(最近一段时间小模型更加受到了青睐)。

举个例子,就像建造一座摩天大楼,仅仅堆砌钢筋水泥是不够的,还需要考虑建筑设计、材料质量、施工工艺等因素。同样,仅仅追求参数规模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开心的AI频道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值