SARIMA时间序列预测

本文介绍了如何利用SARIMA模型进行时间序列预测。首先检查数据的时间相关性,然后进行平稳性检测,通过差分使序列平稳。接着进行白噪声检验,建立SARIMA模型,设置自回归阶数p、移动平均阶数q、差分阶数d、季节性自回归阶数P、季节性移动平均阶数Q和季节性差分阶数D。最后,通过模型信息和P值评估模型的合理性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据源

在这里插入图片描述

原始数据源

import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
# 原始时间序列图
plt.figure(figsize=(9,3),dpi=100)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
df1['收入'].plot(color='green', marker='o', linestyle='dashed', linewidth=1, markersize=2)
plt.ylabel('收入')
plt.title("收入时间序列分析图")

在这里插入图片描述

确定数据是与时间是否存在强相关性的

# 自相关系数,查看数据与时间的相关性
plot_acf(df1['收入'])
plt.title("原始序列的自相关(ACF)图")
plt.show()
# 绘制偏自相关函数(PACF)图
plt.figure(figsize=(12, 6))
plot_pacf(df1['收入'], lags=13, title='偏自相关函数(PACF)图')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值