ARMA,ARIMA,SARIMA时序数据预测(附代码讲解)

本文详细介绍了自回归移动平均模型(ARIMA)、季节性ARIMA(SARIMA)以及它们在处理平稳和季节性时间序列预测中的应用,包括参数选择、模型构建和实例分析。重点讲解了如何通过ACF和PACF图确定p、q值,并探讨了ARIMA的优缺点及SARIMA在周期性数据处理中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 背景

1.1 AR模型

AutoRegress,AR,自回归模型,描述当前值和历史数据的关系,利用历史数据进行预测。AR模型必须满足平稳性。p阶自回归方程的定义为:
y t = u + ∑ i = 1 p r i y t − i + ϵ t y_t=u+\sum_{i=1}^{p}r_iy_{t-i}+\epsilon_t yt=u+i=1priyti+ϵt
其中yt是当前值,u是常数项,p是阶数,ri是自回归系数,后面是误差

  • 自回归(AR),就是指当前值只与历史值有关,用自己预测自己
  • p阶自回归,指当前值与前p个值有关
  • 求常数u与自回归系数ri
  • 自回归模型的限制
    (1)自回归模型是用自身的数据来进行预测,即建模使用的数据与预测使用的数据是同一组数据;
    (2)必须具有平稳性;
    (3)必须具有自相关性,如果自相关系数(φi)小于0.5,则不宜采用;
    (4)自回归只适用于预测与自身前期相关的现象。

1.2 移动平均模型MA

移动平均模型关注的是自回归模型中的误差项的累加,移动平均法能有效地消除预测中的随机波动。q阶移动平均模型公式为:
y t = u + ϵ t + ∑ i = − 1 q θ i ϵ t − i y_t = u+\epsilon_t+\sum_{i=-1}^q\theta_i\epsilon_{t-i} yt=u+ϵt+i=1qθiϵti

  • q阶自回归,指当前值与前q个误差有关
  • 求常数u与系数θi

1.3 自回归移动平均模型(ARMA)

y t = u + ∑ i &

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Weiyaner

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值