1 背景
1.1 AR模型
AutoRegress,AR,自回归模型,描述当前值和历史数据的关系,利用历史数据进行预测。AR模型必须满足平稳性。p阶自回归方程的定义为:
y t = u + ∑ i = 1 p r i y t − i + ϵ t y_t=u+\sum_{i=1}^{p}r_iy_{t-i}+\epsilon_t yt=u+i=1∑priyt−i+ϵt
其中yt是当前值,u是常数项,p是阶数,ri是自回归系数,后面是误差
- 自回归(AR),就是指当前值只与历史值有关,用自己预测自己
- p阶自回归,指当前值与前p个值有关
- 求常数u与自回归系数ri
- 自回归模型的限制
(1)自回归模型是用自身的数据来进行预测,即建模使用的数据与预测使用的数据是同一组数据;
(2)必须具有平稳性;
(3)必须具有自相关性,如果自相关系数(φi)小于0.5,则不宜采用;
(4)自回归只适用于预测与自身前期相关的现象。
1.2 移动平均模型MA
移动平均模型关注的是自回归模型中的误差项的累加,移动平均法能有效地消除预测中的随机波动。q阶移动平均模型公式为:
y t = u + ϵ t + ∑ i = − 1 q θ i ϵ t − i y_t = u+\epsilon_t+\sum_{i=-1}^q\theta_i\epsilon_{t-i} yt=u+ϵt+i=−1∑qθiϵt−i
- q阶自回归,指当前值与前q个误差有关
- 求常数u与系数θi
1.3 自回归移动平均模型(ARMA)
y t = u + ∑ i &