数学分析—曲线积分

第一型,第二型曲线积分

第一型曲线积分和第二型曲线积分的引入是基于两个物理问题

1.求点点线密度不同的曲线的质量
2.求点点力不同的路径上做的功

而解决这两类涉及变化的问题的方法是采用极限思想,先分段,再将每一小段上的质量或力看成是某个相同的值,求出这一小段的质量或功的近似值,之后求和,随着分段分的越细,最终求出的和就越接近精确值。也就是分割—求和—取极限。

下面我们先简单介绍一下曲线积分的定义

1.定义

第一型曲线积分

L L L——可求长曲线( L ⊆ R 3 L\subseteq\R^3 LR3)

f ( x , y , z ) f(x,y,z) f(x,y,z)——函数( L L L上的)

L L L的两个端点分别记为 A A A, B B B.
L L L上取一列点 A = P 1 , P 2 … … P n = B A=P_1,P_2……P_n=B A=P1,P2Pn=B,记 Δ s i = P i − 1 P i ⌢ \Delta s_i=\overset{\frown} {P_{i-1}P_i} Δsi=Pi1Pi
P i − 1 P i ⌢ \overset{\frown} {P_{i-1}P_i} Pi1Pi上任意取点( ξ i , η i , ζ i \xi_i,\eta_i,\zeta_i ξi,ηi,ζi)
lim ⁡ m a x Δ s i → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ s i \lim_{max\Delta s_i\to 0}\sum_{i=1}^n f(\xi_i,\eta_i,\zeta_i)\Delta s_i maxΔsi0limi=1nf(ξi,ηi,ζi)Δsi存在,则将该极限称为曲线 L L L上的第一型曲线积分。
记为 ∫ L f ( x , y , z )   d s \int_{L} f(x,y,z)\, ds Lf(x,y,z)ds

第二型曲线积分

L L L——可求长有向曲线( L ⊆ R 2 L\subseteq\R^2 LR2)
F → ( x , y ) = ( P ( x , y ) Q ( x , y ) ) \overrightarrow{F}(x,y)=\begin{pmatrix} {P}(x,y) \\ {Q}(x,y) \end{pmatrix} F (x,y)=(P(x,y)Q(x,y))——函数( L L L上的)
L L L的起点和终点分别记为 A A A, B B B.
L L L上取一列点 A = P 1 , P 2 … … P n = B A=P_1,P_2……P_n=B A=P1,P2Pn=B,记 Δ s i → = P i − 1 P i → \overrightarrow{\Delta s_i}=\overrightarrow{{P_{i-1}P_i}} Δsi =Pi1Pi
P i − 1 P i → \overrightarrow{P_{i-1}P_i} Pi1Pi 上任意取点( ξ i , η i \xi_i,\eta_i ξi,ηi)
lim ⁡ m a x ∣ Δ s i → = ∣ → 0 ∑ i = 1 n F → ( ξ i , η i ) ⋅ Δ s i → \lim_{max\\|{\overrightarrow{\Delta s_i}=}|\to 0}\sum_{i=1}^n \overrightarrow{F}(\xi_i,\eta_i)·\overrightarrow{\Delta s_i} maxΔsi =0limi=1nF (ξi,ηi)Δsi 存在,则将该极限称为有向曲线 L L L上的第二型曲线积分。
记为 ∫ L F → ( x , y ) ⋅   d s → \int_{L} \overrightarrow{F}(x,y)·\, \overrightarrow{ds} LF (x,y)ds

注:因为 F → ( x , y ) = ( P ( x , y ) , Q ( x , y ) ) Δ s i → = ( Δ x i → , Δ y i → ) \overrightarrow{F}(x,y)=(P(x,y),Q(x,y)) \qquad\overrightarrow{\Delta s_i}=(\overrightarrow{\Delta x_i},\overrightarrow{\Delta y_i}) F (x,y)=(P(x,y),Q(x,y))Δsi =(Δxi ,Δyi )
∫ L F → ( x , y ) ⋅   d s → \int_{L} \overrightarrow{F}(x,y)·\, \overrightarrow{ds} LF (x,y)ds 也可记为 ∫ L P d x + Q d y \int_{L} P{dx}+ Q{dy} LPdx+Qdy
又因为 ∑ i = 1 n F → ( x , y ) ⋅ Δ s i → = ∑ i = 1 n P ( x , y ) Δ x i + ∑ i = 1 n Q ( x , y ) Δ y i \sum_{i=1}^n \overrightarrow{F}(x,y)·\overrightarrow{\Delta s_i}=\sum_{i=1}^n P(x,y)\Delta x_i+\sum_{i=1}^n Q(x,y)\Delta y_i i=1nF (x,y)Δsi =i=1nP(x,y)Δxi+i=1nQ(x,y)Δyi
其中 ∑ i = 1 n P ( x , y ) Δ x i \sum_{i=1}^n P(x,y)\Delta x_i i=1nP(x,y)Δxi称为沿有向曲线 L L L关于坐标轴 x x x的第二型曲线积分。
∑ i = 1 n P ( x , y ) Δ x i , ∑ i = 1 n Q ( x , y ) Δ y i \sum_{i=1}^n P(x,y)\Delta x_i,\sum_{i=1}^n Q(x,y)\Delta y_i i=1nP(x,y)Δxii=1nQ(x,y)Δyi极限存在,则 ∑ i = 1 n F → ( x , y ) ⋅ Δ s i → \sum_{i=1}^n \overrightarrow{F}(x,y)·\overrightarrow{\Delta s_i} i=1nF (x,y)Δsi 极限存在。此时则有 ∫ L P d x + Q d y = ∫ L P d x + ∫ L Q d y \int_{L} P{dx}+ Q{dy}=\int_{L} P{dx}+\int_{L} Q{dy} LPdx+Qdy=LPdx+LQdy

PS:一年前写好的,咕到今年改好才发。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值