机器人C
码龄8年
关注
提问 私信
  • 博客:95,115
    问答:5,760
    100,875
    总访问量
  • 20
    原创
  • 1,894,426
    排名
  • 64
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-03-22
博客描述:
机器人、C++、轨迹算法、系统开发、示教器开发
查看详细资料
个人成就
  • 获得63次点赞
  • 内容获得17次评论
  • 获得475次收藏
  • 代码片获得218次分享
创作历程
  • 11篇
    2020年
  • 9篇
    2019年
成就勋章
TA的专栏
  • Vrep/CoppeliaSim机器人仿真
  • 步进电机与驱动器相关
  • ROS
    1篇
  • 异常操作时处理办法分享
    1篇
  • linux操作系统
    2篇
  • 机器人算法类
    9篇
  • 工业机器人控制器
    1篇
  • 工业机器人示教器系统
    1篇
  • C++知识篇
    3篇
  • 机器人数学基础
    5篇
  • 机器人测试
    1篇
兴趣领域 设置
  • 人工智能
    图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

曲线积分求长度simpson公式

曲线积分求长度辛普森公式基本思想就是把复杂的函数f近似成二次函数简化得到simpson公式对于在区间[a,b]越小,则求出的积分长度越接近实际长度。但若[a,b]区间较大,则需要使用复化的辛普森公式。复化辛普森公式顾名思义是指将[a,b]区间划分为n等份,然后分别使用辛普森公式进行求和。...
原创
发布博客 2020.12.04 ·
4150 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

进制转换实现C++

//10进制转2进制 int input = 12345; int result[16]; for(int i = 0; i < 16; i++) { result[i] = input % 2; input = input / 2; std::cout << "10进制转2进制result ["<<i<<"]= "<< result[i] <<std:...
原创
发布博客 2020.11.16 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

6轴机器人正逆解和反解选解办法

记录一下:最近花了点时间,对市场最为复杂的6轴机器人进行了改进DH参数建立、正解推算、逆解推算、逆解选解等方面操作,实际上机验证通过。最后撰写了推算过程文档。
原创
发布博客 2020.10.28 ·
2728 阅读 ·
0 点赞 ·
3 评论 ·
3 收藏

一种共享内存方式的进程间通讯方法与实现

共享内存由于其特殊性—共享内存是存在与每个进程的地址空间中的,通俗点就是这部分数据是对每个进程可见的,这样每个进程都可以在一定条件下直接操作共享内存中的数据,避免了数据的复制等耗时的操作,这也是共享内存比其他几种IPC机制(信号量、管道、消息队列等)的通信方式效率高的原因。测试程序1、赋值进程#include <QCoreApplication>#include <boost/interprocess/managed_shared_memory.hpp>#inclu
原创
发布博客 2020.07.21 ·
280 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SCARA、通用6轴机器人奇异点位置与问题分析

机器人奇异点位置是避不开的话题。机器人在奇异点附近进行笛卡尔空间规划(如直线、圆弧等)会出现异常。机器人中,一般分为:顶部奇异点(肩关节奇异点)、延伸奇异点(肘关节奇异点)、腕部奇异点(腕关节奇异点)。在奇异点附近,需要对机器人运动学中机器人的运动学进行区别对待。1、顶部奇异点当腕关节中心(关节4、5、6的旋转轴汇交的一点)的位置位于第一关节轴线的上方时,该位置称为机器人的顶部奇异点。处于该位置时,首先第一关节的会有无穷多解;其次容易造成关节1和关节4瞬间旋转180°;最后还有更为特殊情况:在该位置
原创
发布博客 2020.07.01 ·
9389 阅读 ·
2 点赞 ·
0 评论 ·
35 收藏

一种梯形速度规划算法代码与仿真

下面介绍的时一种较为常用的梯形速度规划,梯形速度规划因为存在理论的匀速段而且曲线较为简单受控,往往使用起来较为方便。但该速度规划的加速度没有连续,相对于S型速度规划来说冲击力较大,因此在高精度、少冲击、高要求的速度规划里面用的比较少。但此处仅作为简单介绍梯形曲线如何编写和仿真。因此,时间取整的问题本处省略了,多轴同步本处也省略了。这些问题其实也很简单,由读者思考。function trapezoid( angle, maxSpeed, maxAcc,ts )%UNTITLED 此处显示有关此函数
原创
发布博客 2020.06.28 ·
1666 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

Eigen库的下载、配置与矩阵库的基本使用方法

1、Eigen库的下载http://bitbucket.org/eigen/eigen/get/3.2.5.tar.bz22、Eigen配置假设将上述下载解压放在C盘,命名为eigen本处在Qt里使用到,需要在pro文件添加如下路径INCLUDEPATH += C:\eigen3、矩阵的基本使用#include <QCoreApplication>#include <Eigen/Dense>#include <iostream>usin
原创
发布博客 2020.06.10 ·
2232 阅读 ·
2 点赞 ·
4 评论 ·
1 收藏

步进电机和步进驱动器的介绍、接线、细分和控制方法

1、步进电机和步进驱动器图示2、两相步进电机区分相序的方法方法一两相四线都没有短接时,旋转步进电机的轴,此时转轴应该比较容易转动。将任意两根线短接,然后旋转步进电机的轴,此时若比较困难转动,则说明该两根线为同相序。否则为不同相序。方法二将万用表打到电阻档,任意两根线接到万用表红黑两端,若此时电阻较小时,则说明该两线为同相;若电阻无穷大时,则说明该两线为非同相。3...
原创
发布博客 2020.03.06 ·
37483 阅读 ·
42 点赞 ·
5 评论 ·
291 收藏

Linux常见命令行

1、压缩指令将Robot(文件夹或文件)打包为Robot.tar.gztar czvf Robot.tar.gz Robot2、解压指令将Robot.tar.gz解压tar zxvf Robot.tar.gz3、搜索指令1)find指令搜索语法:find [搜素范围] [匹配条件]例如:find / -name init 在根目录下查找 名字为init的文...
原创
发布博客 2020.02.25 ·
239 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ROS 安装步骤和验证

ROS是Robot Operating Syetem的简写,目前有几个长期支持的版本,对应着Ubuntu的三个LTS版本。具体如下:ROS版本 发行时间 对应Ubuntu版本 Ros Indigo 2014 Ubuntu14.04 Ros kinetic 2016 Ubuntu16.04 Ros Melodic 201...
原创
发布博客 2020.02.15 ·
1424 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器人空间平滑过渡-6点5次贝塞尔曲线

在工业机器人应用中,空间直线或者圆弧等笛卡尔运动中常使用贝塞尔曲线作为过渡平滑,而6个控制点5次贝塞尔曲线更具备轨迹平滑、速度可导、加速度连续等要求,往往应用于高级的机器人控制系统中。贝塞尔曲线(Bézier curve)定义:五次贝塞尔曲线公式为化简得到从上述式子来看,跟五次多项式是一致的,因此跟5次多项式轨迹规划也有相似之处。但也存在不一致的地方。若使用...
原创
发布博客 2020.01.04 ·
3697 阅读 ·
1 点赞 ·
1 评论 ·
27 收藏

基于Matlab Robotics工具箱的通用6轴机器人模型建立与仿真

本文采用Matlab版本为2016a,Robotics工具箱版本为9.0;目前市场上的6轴机器人结构各样,但基本都是符合pieper法则,即机器人的三个相邻关节轴交于一点或三轴线平行。采用改进型的DH参数方法进行对机器人建模%[]参数为 theta d a alpha offsetL1=Link([0 0.407 0 0 ...
原创
发布博客 2019.10.30 ·
4142 阅读 ·
2 点赞 ·
0 评论 ·
21 收藏

关闭结束任务管理器无法显示得进程

1、事件原由:在Qt进行编辑启动工程时,存在报错“无法打开xx.exe进行写入”等错误。此时查看任务管理器却没有发现该exe进程。2、处理办法:windows系统->管理员身份打开cmd->输入tasklist查看进程->tasklist /im xx.exe /结束该进程。...
原创
发布博客 2019.09.19 ·
506 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

经典的工业机器人手动示教时轨迹规划方法

0、简述在传统的工业机器人系统中,手持示教器进行对机器人工具坐标系或用户坐标系进行标定或者对指令文件的运动点位进行示教或确认时都涉及到手动示教。因此,手动示教在机器人系统中起到了关键核心的作用。1、手动示教归类手动示教主要划分为关节移动、直线移动两大类;而直线移动则存在几种坐标系下的直线移动,如:基座标系、工具坐标系、用户坐标系等。2、操作方法一般的操作方法都是通过示教器的按键...
原创
发布博客 2019.09.11 ·
5031 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

工业机器人控制器系统测试方法

工业机器人的测试环节非常重要,是衡量机器人稳定性的重要环节。诚然,在工业机器人的软件架构以及算法编写时,存在各种因素而影响系统的性能,如:1)算法的特殊情况考虑,如:重点、绕点旋转、奇异点附件、关节限位点等等。2)程序代码的编写的防御性不够,如:运行速度为0、加速度为0、寸动距离设置为0等等。3)甚至还有各种其他情况,如:手动示教在笛卡尔空间到达限位,此时延反方向是否可以运动?此时对于经验较少的算...
原创
发布博客 2019.08.20 ·
3429 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

基于Matlab Robotics工具箱的SCARA机器人模型建立和示教

本文采用Matlab版本为2016a,Robotics工具箱版本为9.0;SCARA机器人DH建模采用改进型DH法%[]参数依此为theta d a alpha offsetL1=Link([0 0 0 0 0],'modified');L2=Link([0 0 200 0 0],'modified');L3=Link([0 0 150 pi 1],'modified');L4=...
原创
发布博客 2019.08.07 ·
5257 阅读 ·
8 点赞 ·
2 评论 ·
34 收藏

常用的三角函数公式

原创
发布博客 2019.08.07 ·
606 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

手动计算逆矩阵的常用方法

0、简述在日常计算机器人逆解时,经常使用工具来计算逆矩阵,然而手动计算能力有所减弱,在此记录一下计算逆矩阵的几种常用方法。1、伴随矩阵求逆解2、解方程组方法利用矩阵与其逆矩阵的乘法得到的是单位矩阵方法求方程组。3、矩阵初等变换方法利用增广矩阵方法。首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵。经过初等变换后等到逆矩阵。...
原创
发布博客 2019.08.03 ·
1638 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器人用户坐标系意义与标定算法实现

1、用户坐标系的意义可以通过下图来表达:2、用户坐标系的标定原理:关于向量叉乘的运算,几何意义如下图。关于标定的步骤:(1)第一示教点为用户坐标系原点;(2)第二示教点为用户坐标系X轴方向上的一点;(3)第三示教点为用户坐标系在XY平面第一象限的一点。3、标定算法的代码实现...
原创
发布博客 2019.06.22 ·
8146 阅读 ·
1 点赞 ·
2 评论 ·
20 收藏

linux 给应用程序创建桌面快捷方式

综述:在linux下,有时候为了操作方便,创建一些应用程序的快捷方式是有必要的。本文提供如下的通用方式创建在桌面的应用程序快捷方式。第一步:在桌面创建×××.desktop文件,编写如下文本:××××××××××××××××××××××××××××××××××××××××××××××××××[Desktop Entry] # 每个desktop文件都已这个标签开始,说明这是一个Deskto...
原创
发布博客 2019.04.28 ·
1011 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多