数学分析 曲线积分(第20章)

一.第一型曲线积分
在这里插入图片描述
1.定义:
在这里插入图片描述
在这里插入图片描述
2.性质:

①若 ∫ L f i ( x , y ) d s   ( i = 1... k ) \int_Lf_i(x,y)ds\,(i=1...k) Lfi(x,y)ds(i=1...k)均存在,则 ∫ L ∑ i = 1 k c i f i ( x , y ) d s \int_L\displaystyle\sum_{i=1}^kc_if_i(x,y)ds Li=1kcifi(x,y)ds也存在,且 ∫ L ∑ i = 1 k c i f i ( x , y ) d s = ∑ i = 1 k c i ∫ L f i ( x , y ) d s \int_L\displaystyle\sum_{i=1}^kc_if_i(x,y)ds=\displaystyle\sum_{i=1}^kc_i\int_Lf_i(x,y)ds Li=1kcifi(x,y)ds=i=1kciLfi(x,y)ds 其 中 c i   ( i = 1... k ) 其中c_i\,(i=1...k) ci(i=1...k)为常数

②若曲线段 L L L由曲线 L 1 . . . L k L_1...L_k L1...Lk首尾相接而成,且 ∫ L i f ( x , y ) d s   ( i = 1... k ) \int_{L_i}f(x,y)ds\,(i=1...k) Lif(x,y)ds(i=1...k)均存在,则 ∫ L f ( x , y ) d s \int_Lf(x,y)ds Lf(x,y)ds也存在,且 ∫ L f ( x , y ) d s = ∑ i = 1 k ∫ L i f ( x , y ) d s \int_Lf(x,y)ds=\displaystyle\sum_{i=1}^k\int_{L_i}f(x,y)ds Lf(x,y)ds=i=1kLif(x,y)ds

③若 ∫ L f ( x , y ) d s , ∫ L g ( x , y ) d s \int_Lf(x,y)ds,\int_Lg(x,y)ds Lf(x,y)ds,Lg(x,y)ds均存在,且在 L L L f ( x , y ) ≤ g ( x , y ) f(x,y)≤g(x,y) f(x,y)g(x,y),则 ∫ L f ( x , y ) d s ≤ ∫ L g ( x , y ) d s \int_Lf(x,y)ds≤\int_Lg(x,y)ds Lf(x,y)dsLg(x,y)ds

④若 ∫ L f ( x , y ) d s \int_Lf(x,y)ds Lf(x,y)ds存在,则 ∫ L ∣ f ( x , y ) ∣ d s \int_L|f(x,y)|ds Lf(x,y)ds也存在,且 ∣ ∫ L f ( x , y ) d s ∣ ≤ ∫ L ∣ f ( x , y ) ∣ d s |\int_Lf(x,y)ds|≤\int_L|f(x,y)|ds Lf(x,y)dsLf(x,y)ds

⑤若 ∫ L f ( x , y ) d s \int_Lf(x,y)ds Lf(x,y)ds存在, L L L的弧长为 s s s,则存在常数 c c c使得 ∫ L f ( x , y ) d s = c s \int_Lf(x,y)ds=cs Lf(x,y)ds=cs这里 i n f L   f ( x , y ) ≤ c ≤ s u p L   f ( x , y ) inf_L\,f(x,y)≤c≤sup_L\,f(x,y) infLf(x,y)csupLf(x,y)
推广:若 f ( x , y ) f(x,y) f(x,y)在光滑曲线 L : x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] L:x=x(t),y=y(t),t∈[α,β] L:x=x(t),y=y(t),t[α,β]上连续,则存在点 ( x 0 , y 0 ) ∈ L (x_0,y_0)∈L (x0,y0)L,使得 ∫ L f ( x , y ) d s = f ( x 0 , y 0 ) Δ L \int_Lf(x,y)ds=f(x_0,y_0)ΔL Lf(x,y)ds=f(x0,y0)ΔL其中 Δ L ΔL ΔL L L L的弧长
在这里插入图片描述
在这里插入图片描述

3.几何意义:
在这里插入图片描述
4.计算:

定理20.1:设有光滑曲线 L { x = φ ( t ) y = ψ ( t )   t ∈ [ α , β ] L\begin{cases}x=φ(t)\\y=ψ(t)\end{cases}\,t∈[α,β] L{x=φ(t)y=ψ(t)t[α,β]函数 f ( x , y ) f(x,y) f(x,y)
为定义在 L L L上的连续函数,则 ∫ L f ( x , y ) d s = ∫ α β f ( φ ( t ) , ψ ( t ) ) φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t ( 3 ) \int_Lf(x,y)ds=\int_α^βf(φ(t),ψ(t))\sqrt{φ'^2(t)+ψ'^2(t)}dt\qquad(3) Lf(x,y)ds=αβf(φ(t),ψ(t))φ2(t)+ψ2(t) dt(3)
在这里插入图片描述
在这里插入图片描述
其他形式:
在这里插入图片描述
在这里插入图片描述

二.第二型曲线积分
在这里插入图片描述
在这里插入图片描述
1.定义:
在这里插入图片描述
在这里插入图片描述
2.性质:

①符号与积分方向有关:
在这里插入图片描述

②若 ∫ L P i d x + Q i d y   ( i = 1... k ) \int_LP_idx+Q_idy\,(i=1...k) LPidx+Qidy(i=1...k)均存在,则 ∫ L ( ∑ i = 1 k c i P i ) d x + ( ∑ i = 1 k c i Q i ) d y \int_L(\displaystyle\sum_{i=1}^kc_iP_i)dx+(\displaystyle\sum_{i=1}^kc_iQ_i)dy L(i=1kciPi)dx+(i=1kciQi)dy,且 ∫ L ( ∑ i = 1 k c i P i ) d x + ( ∑ i = 1 k c i Q i ) d y = ∑ i = 1 k c i ( ∫ L P i d x + Q i d y ) \int_L(\displaystyle\sum_{i=1}^kc_iP_i)dx+(\displaystyle\sum_{i=1}^kc_iQ_i)dy=\displaystyle\sum_{i=1}^kc_i(\int_LP_idx+Q_idy) L(i=1kciPi)dx+(i=1kciQi)dy=i=1kci(LPidx+Qidy)其中 c i   ( i = 1... k ) c_i\,(i=1...k) ci(i=1...k)为常数

③若有向曲线 L L L是由有向曲线 L 1 . . . L k L_1...L_k L1...Lk首尾相接而成,且 ∫ L i P d x + Q d y   ( i = 1... k ) \int_{L_i}Pdx+Qdy\,(i=1...k) LiPdx+Qdy(i=1...k)均存在,则 ∫ L P d x + Q d y \int_LPdx+Qdy LPdx+Qdy也存在,且 ∫ L P d x + Q d y = ∑ i = 1 k ∫ L i P d x + Q d y \int_LPdx+Qdy=\displaystyle\sum_{i=1}^k\int_{L_i}Pdx+Qdy LPdx+Qdy=i=1kLiPdx+Qdy

3.计算:
在这里插入图片描述
在这里插入图片描述
三.2类曲线积分的联系
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值