《概率论与数理统计》第一章作业
三、习题题目:
2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:
(1) A发生,B,C都不发生;
(2) A与B发生,C不发生;
(3) A,B,C都发生;
(4) A,B,C至少有一个发生;
(5) A,B,C都不发生;
(6) A,B,C不都发生;
(7) A,B,C至多有2个发生;
(8) A,B,C至少有2个发生.
- A − B − C A-B-C A−B−C
- A ∩ B − C A\cap{B}-C A∩B−C
- A ∩ B ∩ C A\cap{B}\cap{C} A∩B∩C
- A ∪ B ∪ C A\cup{B}\cup{C} A∪B∪C
- A ∪ B ∪ C ‾ \overline{A\cup{B}\cup{C}} A∪B∪C
- A ∩ B ∩ C ‾ \overline{A\cap{B}\cap{C}} A∩B∩C
- A ‾ ∪ B ‾ ∪ C ‾ \overline{A}\cup{\overline{B}\cup{\overline{C}}} A∪B∪C
- ( A B ) ∪ ( A C ) ∪ ( B C ) (AB)\cup(AC)\cup(BC) (AB)∪(AC)∪(BC)
4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求 P ( A B ‾ ) P(\overline{AB}) P(AB)
解:
因为 P ( A − B ) = P ( A ) − P ( A B ) = 0.7 − P ( A B ) = 0.3 P(A-B)=P(A)-P(AB)=0.7-P(AB)=0.3 P(A−B)=P(A)−P(AB)=0.7−P(AB)=0.3
所以 P ( A B ) = 0.4 P(AB)=0.4 P