线代第二章 线性方程组和向量(遗忘点)

秩:有效方程组的个数。确定解的个数。(自由变项的个数 = 基础解系的秩 = n - r)

. 非齐次线性方程组有解的条件:

        R(A,β)=R(A)=n(未知量的个数)有唯一一个解

        R(A,β)≠R(A)无解

         R(A,β)=R(A)<n 无数个解

2.向量β可以被向量组α线性表示等价于AX=β方程有解。表示法唯一,即唯一解。

向量组A=[α1,α2,α3...αn]线性无关即AX=0仅有0解(R(A)=n(方阵满秩,秩和未知量的个数相等) or |A|≠0)。

有非零解时(R(A)<n or |A|=0),向量组线性相关。

3.n个向量线性相关。则必定存在一个向量可以被其他n-1个向量线性表示出。

相应的,线性无关就一定是任何一个向量都无法被其他n-1个向量线性表示出。

4.最大无关组:任何一个向量都可以被向量组中r个向量线性表示(且r-1个向量不行)。那这r个向量就是向量组的一个最大无关组。向量组的秩就是r。(含0向量,秩为0)

4.5向量组等价于自身的任意一个最大无关组。任意两个最大无关组等价(秩相等,但未必等价)。

5.向量组A和向量组B可以互相线性表示出,则A等价于B。 AX=B有解,则A=BX-1   B=AX。X就是关联矩阵。

6.矩阵的初等变换不改变矩阵的秩(=行秩=列秩)。

7.η1,η2是AX=0的解。.η1+η2,.kη1,kη2都是解。

8.基础解系(不唯一):是AX=0解向量组的一个最大无关组,秩为s。则s = n -r(A)  .(即自由变项取不同值对应的解)

9.非齐次线性方程组的解η1,η2。则η1-η2是AX=0的解。γ是AX=0的通解,η1是AX=β的特解。那么非齐次通解= γ+η1.

10.n维向量空间:R上全体n维向量组成的集合Rn,对于这所有的向量的线性运算(加法和数乘)是封闭的。空间的最大无关组就是空间的基(三维坐标系的一个单位基就是(1,0,0),(0,1,0),(0,0,1),也叫自然基).我们知道的,空间里的任何一个向量β都可以被最大无关组线性A(αi)表示,β被表示的系数a1,a2,a3,...an叫做在基α1,α2,...αr表示下的坐标。[a1,a2,...,an]就叫做坐标向量。

任意一个最大无关组都是基,所以最大无关组之间的变换也叫做基变换。变换的矩阵就是过度矩阵。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值