线性方程组(三)- 向量方程

小结

  1. 向量的定义
  2. 向量方程的定义和求解
  3. S p a n { v } \boldsymbol{Span\{v\}} Span{ v} S p a n { u , v } \boldsymbol{Span\{u,v\}} Span{ u,v}的几何解释

R 2 \mathbb{R}^{2} R2中的向量

仅含一列的矩阵称为&列向量,或简称向量。向量表示一组有序数。
包含两个元素的向量表示为: w = [ w 1 w 2 ] \boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ \end{bmatrix} w=[w1w2],其中 w 1 w_1 w1 w 2 w_2 w2是任意实数。
所有两个元素的向量的集记为 R 2 \mathbb{R}^{2} R2 R \mathbb{R} R表示向量中的元素是实数,而指数2表示每个向量包含两个元素。
R 2 \mathbb{R}^{2} R2中两个向量相等当且仅当其对应元素相等。即 R 2 \mathbb{R}^{2} R2中的向量是实数的有序对。
给定实数 c c c R 2 \mathbb{R}^{2} R2中两个向量 u \boldsymbol{u} u v \boldsymbol{v} v,它们的和 u + v \boldsymbol{u}+\boldsymbol{v} u+v是把 u \boldsymbol{u} u v \boldsymbol{v} v对应元素相加所得的向量。 u \boldsymbol{u} u c c c标量乘法(或数乘)是把 u \boldsymbol{u} u的每个元素乘以 c c c,所得向量记为 c u c\boldsymbol{u} cu c u c\boldsymbol{u} cu中的数 c c c称为标量(或)。

给定 u = [ 1 − 2 ] \boldsymbol{u}= \begin{bmatrix} 1 \\ -2 \\ \end{bmatrix} u=[12] u = [ 2 − 5 ] \boldsymbol{u}= \begin{bmatrix} 2 \\ -5 \\ \end{bmatrix} u=[25],求 4 u − 3 v 4\boldsymbol{u}-3\boldsymbol{v} 4u3v
解: 4 u − 3 v \quad4\boldsymbol{u} - 3\boldsymbol{v} 4u3v
= 4 u + ( − 3 ) v = [ 4 ∗ 1 4 ∗ ( − 2 ) ] + [ − 3 ∗ 2 − 3 ∗ ( − 5 ) ] = [ 4 − 8 ] + [ − 6 15 ] = [ 4 + ( − 6 ) − 8 + 15 ] = [ − 2 7 ] \qquad= 4\boldsymbol{u} + (-3)\boldsymbol{v} \\ \qquad = \begin{bmatrix} 4 * 1 \\ 4 * (-2) \\ \end{bmatrix} + \begin{bmatrix} -3 * 2 \\ -3 * (-5) \\ \end{bmatrix}\\ \qquad = \begin{bmatrix} 4 \\ -8 \\ \end{bmatrix} + \begin{bmatrix} -6 \\ 15 \\ \end{bmatrix}\\ \qquad = \begin{bmatrix} 4 + (-6) \\ -8 + 15 \\ \end{bmatrix}\\ \qquad = \begin{bmatrix} -2 \\ 7 \\ \end{bmatrix} =4u+(3)v=[414(2)]+[323(5)]=[48]+[615]=[4+(6)8+15]=[27]

R 2 \mathbb{R}^{2} R2的几何表示

考虑平面上的直角坐标系。因为平面上每个点由实数的有序对确定,所以可把几何点 ( a , b ) (a, b) (a,b)与列向量 [ a b ] \left[\begin{matrix} a \\ b \\ \end{matrix}\right] [ab]等同。因此我们可把 R 2 \mathbb{R}^{2} R2看作平面上所有点的集合。
向量 [ 3 − 1 ] \left[\begin{matrix} 3 \\ -1 \\ \end{matrix}\right] [31]的几何表示是一条由原点 ( 0 , 0 ) (0, 0) (0,0)指向点 ( 3 , − 1 ) (3, -1) (3,1)的有向线段。

向量加法的平行四边形法则
R 2 \mathbb{R}^{2} R2中向量 u \boldsymbol{u} u和向量 v \boldsymbol{v} v用平面上的点表示,则 u + v \boldsymbol{u} + \boldsymbol{v} u+v对应于以 u \boldsymbol{u} u 0 \boldsymbol{0} 0 v \boldsymbol{v} v为顶点的平行四边形的第4个顶点。
在这里插入图片描述

R n \mathbb{R}^{n} Rn中的向量

R 3 \mathbb{R}^{3} R3中向量是 3 × 1 3 \times 1 3×1列矩阵,有3个元素。它们表示三维空间中的点,或起点为原点的箭头。

n n n是正整数,则 R n \mathbb{R}^{n} Rn表示所有 n n n个实数数列(或有序 n n n元组)的集合,通常写成 n × 1 n \times 1 n×1列矩阵的形式, u = [ u 1 u

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值