【OpenMMLab实战营打卡-第6课】语义分割算法基础

语义分割基本思路

语义分割是对图片逐像素分类。

应用:医疗影像分析,自动驾驶,遥感影像解译,视频会议

语义分割仅考虑像素的类别

  1. 最早期方法:按照颜色区分

  1. 逐像素分类-滑窗

复用卷积计算,可以降低计算量

全卷积网络FCN就是上面这种优化方法,把全连接层全部换成了卷积,这样可以实现任意尺寸的输入

预测图的升采样

转置卷积的卷积核可以写成转置矩阵的形式。它能把小图变成大图。

基于多层级的特征上采样:

浅层的网络细节丰富,语义信息贫乏,深层则相反:

UNet就是把这个思想发挥到了极致:

上下文:图块周围的信息

滑动窗口丢失了上下文信息

如果滑块的感受野足够大,就可以获取一些上下文信息

PSPNet2016就用了多尺度池化得到不同尺度的特征图

DeepLab系列:

有一系列的改进手段:

空洞卷积:在不增加参数的情况下增大感受野;

CRF条件随机场:

使分割结果从模糊变清晰 是一种概率模型,鼓励仅在原图颜色边界处产生类别变化,内部不发生变化

上面这种图可以用PPT画

语义分割的经典模型和算法:

评估方法

IOU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值