Prompt learning 提示学习
Prompt learning(提示学习)是一种新兴的机器学习技术,旨在利用预训练模型的语言生成能力来进行特定任务的学习和应用。与传统的微调方法不同,Prompt learning 通过设计输入提示(prompt),直接在模型的输入中加入任务相关的信息,从而引导模型产生符合任务需求的输出。这种方法尤其适用于大规模预训练模型(如 GPT-3、BERT 等),在 NLP 任务中具有广泛的应用前景。
例如,如果你向模型提供了“Translate the following English text to French: {test}” 这样的提示,模型就会学习到这是一个翻译任务,并尝试将 {text} 从英语翻译成法语。这种方法的关键在于找到能够引导模型正确响应的有效提示。
训练方法:
- Few-shot Learning:通过少量的任务示例来指导模型适应特定任务。这种方法适用于需要快速适配新任务的场景,特别是在样本稀缺的情况下表现较好。
- Zero-shot Learning:无需训练示例,通过设计通用的 Prompt,即可直接应用预训练模型来完成任务。这种方法依赖于模型在大规模语料上预训练获得的通用知识。
- Fine-tuning with Prompt:在 Prompt learning 的基础上,对模型进行少量的微调,以提升模型在特定任务上的表现。
通过 Prompt learning,可以在预训练模型的基础上,以更少的数据和计算资源,实现更灵活的模型应用。这一方法在大规模语言模型的推广应用中具有重要意义,是自然语言处理和生成任务中的一个创新思路。
In-context learning
In-context learning(ICL,上下文学习)是一种新兴的机器学习方法,特别在大规模预训练语言模型(如 GPT-3)中展现出巨大潜力。In-context learning 的核心思想是无需显式地对模型进行微调或更新参数,而是通过给定一组任务示例作为上下文,直接引导模型根据提供的上下文进行推理和生成。这种方式为任务迁移和快速适应新任务提供了强大支持,尤其适合少样本学习和零样本学习任务。以下是 In-context learning 的核心概念和实现机制:
-
上下文示例(Context Examples):ICL 通过在输入中包含一些任务示例,帮助模型理解任务需求。这些示例由输入-输出对组成,模型通过观察这些对,学习到任务的输入和输出模式。例如,在翻译任务中,可以给模型几对句子翻译示例,模型将根据这些示例推测新的句子翻译。
-
Prompt-based 架构:In-context learning 依赖于 Prompt 设计,在 Prompt 中包含的示例越清晰、数量适当,模型的推理效果通常越好。这些 Prompt 类似于任务指令和示例的组合,通过将任务示例直接拼接到待预测文本的前面,模型能够学习到特定任务的规律。
-
Few-shot 与 Zero-shot 学习:
- Few-shot In-context Learning:在输入中加入少量任务示例(例如 2-5 个),模型在不更新参数的情况下,根据这些示例推测任务的逻辑,生成输出。
- Zero-shot In-context Learning:模型无需任何示例,通过直接设计清晰的任务指令(prompt)来引导模型理解任务。适用于任务直观、模型预训练有相关知识的场景。
-
基于大规模预训练的迁移:In-context learning 之所以有效,是因为大型预训练语言模型在海量文本中学习到了丰富的语义信息和潜在规律。ICL 可以看作是利用模型内在的迁移学习能力,通过上下文信息推理出新任务的输出。
-
优缺点:
- 优点:ICL 不需要模型参数的更新,可以在推理阶段迅速适应新任务,非常适合快速原型开发和低资源场景。
- 缺点:模型在处理过长的上下文时可能遇到输入长度限制,并且过多的示例可能导致性能下降。此外,模型的表现高度依赖示例的质量和设计方式,难以保证每次都能达到稳定的效果。
</