torch_geometric (PyG) 图数据可视化

代码

import torch
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt

def graph_showing(data):
    '''
    args:
         data: torch_geometric.data.Data
    '''
    G = nx.Graph()
    edge_index = data['edge_index'].t()
#     print(edge_index)
    edge_index = np.array(edge_index.cpu())
#     print(edge_index)
    
    G.add_edges_from(edge_index)
    nx.draw(G)
    plt.show()

展示

展示用到的是TUDataset数据集

from torch_geometric.datasets import TUDataset
dataset = TUDataset(root='./data/ENZYMES', name='ENZYMES')

for data in dataset:
    print(data)
#     print(data['edge_index'])
#     print(data.is_directed())
#     print(data.num_edges)
    graph_showing(data)

输出:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值