Pytorch时间序列电力数据多输出预测

本文介绍了如何使用PyTorch构建GRU网络进行时间序列预测,特别是针对电力消耗数据,预测未来7天的电力消费。不同于传统的单输出回归,此方法直接制作多输出数据,通过模型得到7维输出,用以评估7天的预测值。数据集涵盖了2015-2016年的电力消耗记录,通过更新门和重置门机制解决RNN的长期依赖问题。
摘要由CSDN通过智能技术生成

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、使用Pytorch时间序列电力数据多输出预测

本项目使用GRU作为模型来进行时间序列预测,但是本项目与传统时序预测不同,传统来讲是预测未来某一天或者某个时间点属于单输出回归问题,本任务目标是预测未来7天的数据,对于这个需求一般是两种方法,其一是连续7次进行单输出回归预测,进而达到预测7天的目的,本文使用的是第二种方法,直接制作多输出数据,传到模型当中,让模型的输出为7个维度,然后7个维度进行

  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
以下是使用 PyTorch 实现 GRU 模型的示例代码: ```python import torch import torch.nn as nn class GRU(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(GRU, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, h0): out, h = self.gru(x, h0) out = self.fc(out[:, -1, :]) return out, h ``` 在上述代码中,我们定义了一个名为 GRU 的类,它继承了 PyTorch 的 nn.Module 类。在该类的构造函数中,我们定义了 GRU 模型的基本结构,即输入大小、隐藏层大小、层数和输出大小。我们使用 PyTorch 中的 nn.GRU 类来创建 GRU 层,并使用 nn.Linear 类创建全连接层。在前向传播函数 forward 中,我们首先使用 GRU 层处理输入 x 和初始隐藏状态 h0,然后将最后一个时间步的输出传入全连接层进行分类。 下面是一个使用上述 GRU 模型进行训练和评估的示例: ```python # 定义超参数 input_size = 10 hidden_size = 20 num_layers = 2 output_size = 1 learning_rate = 0.01 num_epochs = 10 # 创建模型、损失函数和优化器 model = GRU(input_size, hidden_size, num_layers, output_size) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(train_loader): # 前向传播 outputs, _ = model(inputs, None) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 评估模型 with torch.no_grad(): correct = 0 total = 0 for inputs, labels in test_loader: outputs, _ = model(inputs, None) predicted = torch.round(outputs) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test set: {} %'.format(100 * correct / total)) ``` 在上述代码中,我们首先定义了超参数,包括输入大小、隐藏层大小、层数、输出大小、学习率和训练轮数。然后,我们创建了 GRU 模型、损失函数和优化器。在训练循环中,我们对每个 mini-batch 执行前向传播、损失计算、反向传播和优化。在测试循环中,我们计算模型在测试集上的准确率。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值