PyG利用GCN实现Cora、Citeseer、Pubmed引用论文节点分类

本篇博客使用PyTorch和PyG库,通过GCN网络实现对Cora、Citeseer、Pubmed引用论文节点的分类任务。介绍了数据集、配置类、工具类的定义,以及模型的搭建、训练和验证过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

大家好,我是阿光。

本专栏内包含基于GNN的项目实战案例(PyG实现),以及研究多年遇到的问题和一些总结与注意事项,理论与实践相结合,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

在这里插入图片描述

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.11.0
  • PyG版本:2.1.0

💥 项目专栏:【GNN图神经网络项目实战案例目录】


本文我们将使用Pytorch + Pytorch Geometric来复现论文 《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》 的实验部分,采用GCN实现Cora、Citeseer、Pubmed引用论文节点分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值