推荐系统中召回率Recall计算方式附代码

Recall是评估推荐系统性能的关键指标,衡量预测出用户实际喜欢物品的比例。计算公式为召回率=有交互物品数/预测与实际交集物品数。本文通过实例和Python代码详细解释如何基于User-Item计算召回率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recall(召回率)是用于评估推荐系统性能的一种常见指标

Recall(召回率)是指在所有实际有交互的用户 - 物品对中,推荐系统成功预测出的比例。具体来说,设所有有交互的用户 - 物品对为S,推荐系统预测出的用户 - 物品对为T,则Recall的计算公式为:

recall=∣T∩S∣∣S∣recall = \frac{|T \cap S|}{|S|}recall=</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值