文章目录
一、模型微调有哪些不同方法?
模型微调(Fine-tuning)有许多不同的方法,这些方法可以根据任务类型、数据情况和模型结构进行调整。以下是一些常见的模型微调方法:
-
冻结底层: 首先,将预训练模型的底部几层(或全部层)冻结,这些层包含了在大规模数据上学到的通用特征。然后,只微调替换的顶部几层,以适应特定任务。
-
全局微调: 在预训练模型的基础上,对整个模型进行微调,包括底层和顶层。这种方法通常需要较大的目标数据集,以避免过拟合。
-
层级微调: 在预训练模型的基础上,逐层进行微调,从顶层开始,逐步向底层微调。这有助于防止模型在微调过程中失去预训练的特征。
-
差异化学习率: 为不同的层设置不同的学习率,通常底层使用较小的学习率,而顶层使用较大的学习率。这可以保护预训练模型的特征&