什么是梯度爆炸?

梯度爆炸是指在神经网络训练中梯度值过大,导致权重更新不稳定和训练失败的现象。常见于深度网络,可能由激活函数、初始化方法或优化算法引起。解决方法包括梯度裁剪、权重初始化、调整学习率、优化算法选择和正则化等。
摘要由CSDN通过智能技术生成

在这里插入图片描述

一、什么是梯度爆炸

梯度爆炸(Gradient Explosion)是指在神经网络训练过程中,梯度值变得非常大,超出了网络的处理范围,从而导致权重更新变得不稳定甚至不收敛的现象。当梯度爆炸发生时,网络的权重更新可能会变得异常大,导致网络的参数值迅速膨胀,最终可能导致数值溢出、计算错误和训练失败。

在这里插入图片描述

梯度爆炸通常在深度神经网络中出现,特别是当网络的层数较多,网络结构复杂时,或者使用了不合适的激活函数、初始化方法或优化算法时更容易发生。

解决梯度爆炸问题的方法包括:

  1. 梯度裁剪(Gradient Clipping): 这是一种常见的方法,通过设置梯度的阈值来限制梯度的大小,确保梯度不会超过一定的范围。这有助于避免梯度爆炸。

  2. 权重初始化&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值