文章目录
一、什么是梯度爆炸
梯度爆炸(Gradient Explosion)是指在神经网络训练过程中,梯度值变得非常大,超出了网络的处理范围,从而导致权重更新变得不稳定甚至不收敛的现象。当梯度爆炸发生时,网络的权重更新可能会变得异常大,导致网络的参数值迅速膨胀,最终可能导致数值溢出、计算错误和训练失败。
梯度爆炸通常在深度神经网络中出现,特别是当网络的层数较多,网络结构复杂时,或者使用了不合适的激活函数、初始化方法或优化算法时更容易发生。
解决梯度爆炸问题的方法包括:
-
梯度裁剪(Gradient Clipping): 这是一种常见的方法,通过设置梯度的阈值来限制梯度的大小,确保梯度不会超过一定的范围。这有助于避免梯度爆炸。
-
权重初始化&