论文介绍地址(Paper,Code,Presentation video and Slides)
PointNet:https://web.stanford.edu/~rqi/pointnet/
PointNet++:https://web.stanford.edu/~rqi/pointnet2/
一、PointNet & PointNet++:问题陈述(Problem Statement)
- 由于点云的无序性,直接操作点云比较困难 - PointNet解决(使用具有置换不变性的对称函数)
视频链接:[5分钟点云学习] #02 PointNet 开山之作
- 点云密度不均匀问题 - PointNet++解决
二、方法(Method)
PointNet:通用连续集函数逼近器(Universal Continuous Set Function Approximator)
方案1: 将输入排序为规范顺序
要求该图在维度减小时保持空间邻近性,一般难以实现,且效果不好
方案2: 将输入视为序列来训练 RNN,但通过各种排列来扩充训练数据
将元素数量扩展到数千个输入元素(常规点云数量)难以确保鲁棒性
方案3: 使用对称函数
对于在 x i ∈ R d x_i\in\mathbb{R}^d xi∈Rd的无序点云数据 { x 1 , x 2 , . . . , x n } \{x_1,x_2,...,x_n\} {
x1,x2,...,xn},可以定义一组函数 f : X → R f:\mathcal{X}\to\mathbb{R} f:X→R,将点云映射到向量上:
f ( x 1 , x 2 , … , x n ) = γ ( MAX i = 1 , … , n { h ( x i ) } ) , f\left(x_1, x_2, \ldots, x_n\right)=\gamma\left(\operatorname{MAX}_{i=1, \ldots, n}\left\{h\left(x_i\right)\right\}\right), f(x1,x2,…,xn)=γ(