PointNet & PointNet++ 论文解析+算法理解+复现建议(3D点云 分类+分割)

论文介绍地址(Paper,Code,Presentation video and Slides)

PointNet:https://web.stanford.edu/~rqi/pointnet/
PointNet++:https://web.stanford.edu/~rqi/pointnet2/

一、PointNet & PointNet++:问题陈述(Problem Statement)

  1. 由于点云的无序性,直接操作点云比较困难 - PointNet解决(使用具有置换不变性的对称函数)

在这里插入图片描述

图1. 点云的无序性(图片来源:风中摇曳的小萝卜@Bilibili)

视频链接:[5分钟点云学习] #02 PointNet 开山之作

  1. 点云密度不均匀问题 - PointNet++解决
    在这里插入图片描述
图2. ScanNet的虚拟扫描,模拟点云密度不均匀(图片来源:PointNet++)

二、方法(Method)

PointNet:通用连续集函数逼近器(Universal Continuous Set Function Approximator)

在这里插入图片描述

图3. 不同缓解点云分布不均匀的方法(图片来源:PointNet++)

方案1: 将输入排序为规范顺序
要求该图在维度减小时保持空间邻近性,一般难以实现,且效果不好

方案2: 将输入视为序列来训练 RNN,但通过各种排列来扩充训练数据
将元素数量扩展到数千个输入元素(常规点云数量)难以确保鲁棒性

方案3: 使用对称函数
对于在 x i ∈ R d x_i\in\mathbb{R}^d xiRd的无序点云数据 { x 1 , x 2 , . . . , x n } \{x_1,x_2,...,x_n\} { x1,x2,...,xn},可以定义一组函数 f : X → R f:\mathcal{X}\to\mathbb{R} f:XR,将点云映射到向量上:
f ( x 1 , x 2 , … , x n ) = γ ( MAX ⁡ i = 1 , … , n { h ( x i ) } ) , f\left(x_1, x_2, \ldots, x_n\right)=\gamma\left(\operatorname{MAX}_{i=1, \ldots, n}\left\{h\left(x_i\right)\right\}\right), f(x1,x2,,xn)=γ(

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值