离散变量贝叶斯决策简介

  • 贝叶斯决策
    最小风险:
    min ⁡ R ( α i ∣ x ) = ∑ j = 1 c λ ( α i ∣ ω j ) P ( ω j ∣ x ) \min R\left(\alpha_i \mid \mathrm{x}\right)=\sum_{j=1}^c \lambda\left(\alpha_i \mid \omega_j\right) P\left(\omega_j \mid \mathrm{x}\right) minR(αix)=j=1cλ(αiωj)P(ωjx)
    最小错误率(最大后验概率): max ⁡ P ( ω i ∣ x ) \max P\left(\omega_i \mid \mathbf{x}\right) maxP(ωix)
  • 独立二值特征(binary features)
    – 独立
    p ( x ) = p ( x 1 x 2 ⋯ x d ) = ∏ i = 1 d p ( x i ) p(\mathbf{x})=p\left(x_1 x_2 \cdots x_d\right)=\prod_{i=1}^d p\left(x_i\right) p(x)=p(x1x2xd)=i=1dp(xi)
    – 二值,这边假设只有两类,样本是 d d d维的
    p i = Prob ⁡ ( x i = 1 ∣ ω 1 ) i = 1 , … , d q i = Prob ⁡ ( x i = 1 ∣ ω 2 ) i = 1 , … , d \begin{aligned} & p_i=\operatorname{Prob}\left(x_i=1 \mid \omega_1\right) \quad i=1, \ldots, d \\ & q_i=\operatorname{Prob}\left(x_i=1 \mid \omega_2\right) \quad i=1, \ldots, d \end{aligned} pi=Prob(xi=1ω1)i=1,,dqi=Prob(xi=1ω2)i=1,,d
    – 类条件概率密度
    P ( x ∣ ω 1 ) = ∏ i = 1 d p i x i ( 1 − p i ) 1 − x i P ( x ∣ ω 2 ) = ∏ i = 1 d q i x i ( 1 − q i ) 1 − x i \begin{aligned} & P\left(\mathbf{x} \mid \omega_1\right)=\prod_{i=1}^d p_i^{x_i}\left(1-p_i\right)^{1-x_i} \\ & P\left(\mathbf{x} \mid \omega_2\right)=\prod_{i=1}^d q_i^{x_i}\left(1-q_i\right)^{1-x_i} \end{aligned} P(xω1)=i=1dpixi(1pi)1xiP(xω2)=i=1dqixi(1qi)1xi
    x i x_i xi是样本的第 i i i维特征,取值 0 , 1 0,1 0,1。如果 x i = 0 x_i=0 xi=0,则 p i x i ( 1 − p i ) 1 − x i = 1 − p i p_i^{x_i}\left(1-p_i\right)^{1-x_i}=1-p_i pixi(1pi)1xi=1pi;如果 x i = 1 x_i=1 xi=1,则 p i x i ( 1 − p i ) 1 − x i = p i p_i^{x_i}\left(1-p_i\right)^{1-x_i}= p_i pixi(1pi)1xi=pi
    – 似然比
    P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) = ∏ i = 1 d ( p i q i ) x i ( 1 − p i 1 − q i ) 1 − x i \frac{P\left(\mathrm{x} \mid \omega_1\right)}{P\left(\mathrm{x} \mid \omega_2\right)}=\prod_{i=1}^d\left(\frac{p_i}{q_i}\right)^{x_i}\left(\frac{1-p_i}{1-q_i}\right)^{1-x_i} P(xω2)P(xω1)=i=1d(qipi)xi(1qi1pi)1xi
    – 判别函数
    g ( x ) = log ⁡ p ( x ∣ ω 1 ) P ( ω 1 ) p ( x ∣ ω 2 ) P ( ω 2 ) = ∑ i = 1 d [ x i ln ⁡ p i q i + ( 1 − x i ) ln ⁡ 1 − p i 1 − q i ] + ln ⁡ P ( ω 1 ) P ( ω 2 ) g(\mathbf{x})=\log \frac{p\left(\mathbf{x} \mid \omega_1\right) P\left(\omega_1\right)}{p\left(\mathbf{x} \mid \omega_2\right) P\left(\omega_2\right)}=\sum_{i=1}^d\left[x_i \ln \frac{p_i}{q_i}+\left(1-x_i\right) \ln \frac{1-p_i}{1-q_i}\right]+\ln \frac{P\left(\omega_1\right)}{P\left(\omega_2\right)} g(x)=logp(xω2)P(ω2)p(xω1)P(ω1)=i=1d[xilnqipi+(1xi)ln1qi1pi]+lnP(ω2)P(ω1)
    上式为线性判别函数
    g ( x ) = ∑ i = 1 d w i x i + w 0 g(\mathbf{x})=\sum_{i=1}^d w_i x_i+w_0 g(x)=i=1dwixi+w0
    w i = ln ⁡ p i ( 1 − q i ) q i ( 1 − p i ) i = 1 , … , d w 0 = ∑ i = 1 d ln ⁡ 1 − p i 1 − q i + ln ⁡ P ( ω 1 ) P ( ω 2 ) \begin{aligned} & w_i=\ln \frac{p_i\left(1-q_i\right)}{q_i\left(1-p_i\right)} \quad i=1, \ldots, d \\ & w_0=\sum_{i=1}^d \ln \frac{1-p_i}{1-q_i}+\ln \frac{P\left(\omega_1\right)}{P\left(\omega_2\right)} \end{aligned} wi=lnqi(1pi)pi(1qi)i=1,,dw0=i=1dln1qi1pi+lnP(ω2)P(ω1)

【例一】: P ( ω 1 ) = 0.5 , P ( ω 2 ) = 0.5 P\left(\omega_1\right)=0.5, P\left(\omega_2\right)=0.5 P(ω1)=0.5,P(ω2)=0.5 p i = 0.8 , q i = 0.5 , i = 1 , 2 , 3 p_i=0.8, q_i=0.5, i=1,2,3 pi=0.8,qi=0.5,i=1,2,3
g ( x ) = ∑ i = 1 d w i x i + w 0 w i = ln ⁡ . 8 ( 1 − . 5 ) . 5 ( 1 − . 8 ) = 1.3863 w 0 = ∑ i = 1 3 ln ⁡ 1 − . 8 1 − . 5 + ln ⁡ . 5 . 5 = − 2.7489 \begin{aligned} & g(\mathbf{x})=\sum_{i=1}^d w_i x_i+w_0 \\ & w_i=\ln \frac{.8(1-.5)}{.5(1-.8)}=1.3863 \\ & w_0=\sum_{i=1}^3 \ln \frac{1-.8}{1-.5}+\ln \frac{.5}{.5}=-2.7489 \end{aligned} g(x)=i=1dwixi+w0wi=ln.5(1.8).8(1.5)=1.3863w0=i=13ln1.51.8+ln.5.5=2.7489
在这里插入图片描述
【例二】: P ( ω 1 ) = 0.5 , P ( ω 2 ) = 0.5 P\left(\omega_1\right)=0.5, P\left(\omega_2\right)=0.5 P(ω1)=0.5,P(ω2)=0.5 p 1 = p 2 = 0.8 , p 3 = 0.5 ; q i = 0.5 , i = 1 , 2 , 3 p_1=p_2=0.8, p_3=0.5 ; q_i=0.5, i=1,2,3 p1=p2=0.8,p3=0.5;qi=0.5,i=1,2,3
w 1 = w 2 = ln ⁡ . 8 ( 1 − . 5 ) . 5 ( 1 − . 8 ) = 1.3863 w 3 = 0 w 0 = 2 ln ⁡ 1 − 0.8 1 − 0.5 = − 1.8326 \begin{aligned} & w_1=w_2=\ln \frac{.8(1-.5)}{.5(1-.8)}=1.3863 \\ & w_3=0 \\ & \mathrm{w}_0=2 \ln \frac{1-0.8}{1-0.5}=-1.8326 \end{aligned} w1=w2=ln.5(1.8).8(1.5)=1.3863w3=0w0=2ln10.510.8=1.8326
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果壳小旋子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值