YoloV8改进策略:上采样改进|Patch Expanding Layer 来实现特征图的上采样

96 篇文章 13 订阅 ¥159.90 ¥299.90

摘要

在 Swin Transformer 的解码器中,使用了 Patch Expanding Layer 来实现特征图的上采样。这个层会将相邻维度的特征图重新塑造为更高分辨率的特征图,实现了2倍的上采样。同时,特征的维度也会相应地减半。这种操作可以在解码器中进行上采样操作,以恢复图像的分辨率,同时减少特征的维度。

例如:输入特征(W/32×H/32×8C)上应用线性层,将特征维度增加到2×原始尺寸(W/32×H/32×16C)。然后,利用rearrange操作,将输入特征的分辨率扩展到2倍的输入分辨率,并将特征维度降小到输入维度的四分之一(W/32×H/32×16C→W/16×H/16×4C)。

代码

class PatchExpand2D(nn.Module):
    def __init__(self, dim, dim_scale&#
  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值