YoloV8实战:使用YoloV8实现OBB框检测

125 篇文章 17 订阅 ¥159.90 ¥299.90

定向边框(OBB)数据集概述

使用定向边界框(OBB)训练精确的物体检测模型需要一个全面的数据集。本文解释了与Ultralytics YOLO 模型兼容的各种 OBB 数据集格式,深入介绍了这些格式的结构、应用和格式转换方法。数据集使用DOTA。

YOLO支持的 OBB 格式

在Ultralytics YOLO 模型中,OBB 由YOLO OBB 格式中的四个角点表示。这样可以更准确地检测到物体,因为边界框可以旋转以更好地适应物体。其坐标在 0 和 1 之间归一化:

class_index x1 y1 x2 y2 x3 y3 x4 y4

YOLO 在内部处理损失和输出是xywhr 格式,xy表示边界框的中心点、whr表示宽度、高度和旋转角度。

OBB 格式示例

在这里插入图片描述

例如:

0 0.780811 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值