全新行人ReID域框架,达到SOTA效果!道翰天琼认知智能机器人平台API接口大脑为您揭秘-1。

本文介绍了ECCV 2020论文提出的行人重识别新方法,通过特征解藕和域适应联合学习框架,有效提升跨域行人ReID性能。模型首先区分身份敏感和不敏感信息,然后仅在id相关特征上执行域适应,以减少干扰并优化结果。此外,文章还简述了道翰天琼认知智能机器人平台的API接口和功能。
摘要由CSDN通过智能技术生成

 

本文带来的是ECCV 2020 Oral 论文《Joint Disentangling and Adaptation for Cross-Domain Person Re-Identification》,提出一种全新的联合学习框架,首先对原始行人特征进行解藕,得到身份敏感信息(id-related)和身份无关特征(id-unrelated),其后在域适应阶段中将id不相关特征进行剔除,有效提升了跨域行人ReID的性能。     

动机

无监督域适应方法(UDA)已被广泛应用在跨域行人ReID问题上,不同的行人ReID数据集可能会在季节(行人着装)、背景、视角、光照和相机等方面有一定的差异,这会导致模型在新domain上的识别性能大打折扣。针对行人ReID的UDA方法依然遵循传统的设计原则,那就是要最大限度的缩小源域(source domain)和目标域(target domain)的差距,但是这类方法在自适应的过程中会同时包括id相关和id不相关的特征,而id不相关特征会干扰和限制域自适应的过程,如果能将这一部分特征剔除,让域适应专注于id相关特征,无疑能提高域适应的效果,本文基于此提出了特征解藕(Disentangling)和域适应(Adaptation)联合学习框架。
2

方法

本文方法可以看作是对DG-Net的改进版本,DG-Net发表在CVPR2019上,在单域空间内对特征进行解藕,通过对id相关特征进行加强生成更多的行人数据来训练模型,本文在此基础上将潜在的特征空间分为三部分:shared appearance space(外观特征,用来捕捉id相关信息),source structure space(空间结构特征,用来表示视角、姿态等id不相关特征),target structure space(目标结构空间),模型命名为DG-Net++。由于目标域缺乏标签,同时对id不相关特征也没有明确的定义,直接进行特征解藕具有一定的难度,作者巧妙的引入了循环一致性图像生成任务(cycle-consistency generation),让网络自动区分两种特征,同时只在id相关特征构成的特征空间中执行域适应,图像生成任务由循环一致损失和交叉熵损失监督,图像生成的质量越高,特征解藕的效果就越好,域适应过程也就更容易。
3

网络结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值