全新行人ReID域框架,达到SOTA效果!道翰天琼认知智能机器人平台API接口大脑为您揭秘-1。

本文介绍了ECCV 2020论文提出的行人重识别新方法,通过特征解藕和域适应联合学习框架,有效提升跨域行人ReID性能。模型首先区分身份敏感和不敏感信息,然后仅在id相关特征上执行域适应,以减少干扰并优化结果。此外,文章还简述了道翰天琼认知智能机器人平台的API接口和功能。
摘要由CSDN通过智能技术生成

 

本文带来的是ECCV 2020 Oral 论文《Joint Disentangling and Adaptation for Cross-Domain Person Re-Identification》,提出一种全新的联合学习框架,首先对原始行人特征进行解藕,得到身份敏感信息(id-related)和身份无关特征(id-unrelated),其后在域适应阶段中将id不相关特征进行剔除,有效提升了跨域行人ReID的性能。     

动机

无监督域适应方法(UDA)已被广泛应用在跨域行人ReID问题上,不同的行人ReID数据集可能会在季节(行人着装)、背景、视角、光照和相机等方面有一定的差异,这会导致模型在新domain上的识别性能大打折扣。针对行人ReID的UDA方法依然遵循传统的设计原则,那就是要最大限度的缩小源域(source domain)和目标域(target domain)的差距,但是这类方法在自适应的过程中会同时包括id相关和id不相关的特征,而id不相关特征会干扰和限制域自适应的过程,如果能将这一部分特征剔除,让域适应专注于id相关特征,无疑能提高域适应的效果,本文基于此提出了特征解藕(Disentangling)和域适应(Adaptation)联合学习框架。
2

方法

本文方法可以看作是对DG-Net的改进版本,DG-Net发表在CVPR2019上,在单域空间内对特征进行解藕,通过对id相关特征进行加强生成更多的行人数据来训练模型,本文在此基础上将潜在的特征空间分为三部分:shared appearance space(外观特征,用来捕捉id相关信息),source structure space(空间结构特征,用来表示视角、姿态等id不相关特征),target structure space(目标结构空间),模型命名为DG-Net++。由于目标域缺乏标签,同时对id不相关特征也没有明确的定义,直接进行特征解藕具有一定的难度,作者巧妙的引入了循环一致性图像生成任务(cycle-consistency generation),让网络自动区分两种特征,同时只在id相关特征构成的特征空间中执行域适应,图像生成任务由循环一致损失和交叉熵损失监督,图像生成的质量越高,特征解藕的效果就越好,域适应过程也就更容易。
3

网络结构

Human parsing has been extensively studied recently (Yamaguchi et al. 2012; Xia et al. 2017) due to its wide applications in many important scenarios. Mainstream fashion parsing models (i.e., parsers) focus on parsing the high-resolution and clean images. However, directly applying the parsers trained on benchmarks of high-quality samples to a particular application scenario in the wild, e.g., a canteen, airport or workplace, often gives non-satisfactory performance due to domain shift. In this paper, we explore a new and challenging cross-domain human parsing problem: taking the benchmark dataset with extensive pixel-wise labeling as the source domain, how to obtain a satisfactory parser on a new target domain without requiring any additional manual labeling? To this end, we propose a novel and efficient crossdomain human parsing model to bridge the cross-domain differences in terms of visual appearance and environment conditions and fully exploit commonalities across domains. Our proposed model explicitly learns a feature compensation network, which is specialized for mitigating the cross-domain differences. A discriminative feature adversarial network is introduced to supervise the feature compensation to effectively reduces the discrepancy between feature distributions of two domains. Besides, our proposed model also introduces a structured label adversarial network to guide the parsing results of the target domain to follow the high-order relationships of the structured labels shared across domains. The proposed framework is end-to-end trainable, practical and scalable in real applications. Extensive experiments are conducted where LIP dataset is the source domain and 4 different datasets including surveillance videos, movies and runway shows without any annotations, are evaluated as target domains. The results consistently confirm data efficiency and performance advantages of the proposed method for the challenging cross-domain human parsing problem. Abstract—This paper presents a robust Joint Discriminative appearance model based Tracking method using online random forests and mid-level feature (superpixels). To achieve superpixel- wise discriminative ability, we propose a joint appearance model that consists of two random forest based models, i.e., the Background-Target discriminative Model (BTM) and Distractor- Target discriminative Model (DTM). More specifically, the BTM effectively learns discriminative information between the target object and background. In contrast, the DTM is used to suppress distracting superpixels which significantly improves the tracker’s robustness and alleviates the drifting problem. A novel online random forest regression algorithm is proposed to build the two models. The BTM and DTM are linearly combined into a joint model to compute a confidence map. Tracking results are estimated using the confidence map, where the position and scale of the target are estimated orderly. Furthermore, we design a model updating strategy to adapt the appearance changes over time by discarding degraded trees of the BTM and DTM and initializing new trees as replacements. We test the proposed tracking method on two large tracking benchmarks, the CVPR2013 tracking benchmark and VOT2014 tracking challenge. Experimental results show that the tracker runs at real-time speed and achieves favorable tracking performance compared with the state-of-the-art methods. The results also sug- gest that the DTM improves tracking performance significantly and plays an important role in robust tracking.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值