0 P300基础
0.0大脑
0.1 P300的定义
层级:ERP→P300
频率:以delta(0.5-4hz)脑波为主要贡献和theta(4-7.5hz)脑波响应的融合。
位置:顶叶中心区的正向波峰(Parietocentral Positive)
波峰:大约为10μV(通常是200-250ms之间的最大值,信号容易识别时也可能是400ms,信号难以识别时可能800ms才会出现)
波峰的测量方式:波峰和触发前基线的差值
波峰与时域概率的关系:刺激出现的频率和P300振幅负相关,在出现频率小于1/10s时达到最大值,之后再减小出现频率则不增加P300振幅。
潜伏期:约为300ms()
潜伏期测量方式:波峰时间点和刺激开始时间点的差值
触发方式:主要与期待、意动、觉醒、注意等心理因素有关[1]。当刺激出现的可能性更低时、被试在猜测而不是已经知道下一个刺激的位置时,成分会更明显, 它的程度与被试的心理活动更相关,而与刺激的形式没那么相关[2]。
0.2 预处理
最佳滤波频段是0.1-15Hz,大于0.5Hz的模拟高通滤波会降低P300信号的振幅,P300后段的信号也会由于相位扭曲而变为负值
1 特征提取
1.1 使用1D卷积核LSTM混合模型
手把手教你使用 1D 卷积和 LSTM 混合模型做 EEG 信号识别-CSDN博客
1.1.1 背景知识
pytorch之nn.Conv1d详解-CSDN博客
什么是LSTM层
9.2. 长短期记忆网络(LSTM)动手学深度学习2.0.0
1.1.2 实例
Single Trial P300 Classification Using Convolutional LSTM and Deep Learning Ensembles Method
1.2 算法
P300信号最容易混淆的就是相邻按键的信号,以下是解决这些问题的可能的办法