前言
内容

终身学习的灾难性遗忘问题该如何避免?
EWC方法
在机器学习中,弹性权重巩固(Elastic Weight Consolidation,EWC)是一种解决灾难性遗忘问题的方法,它用于在学习新任务时保留之前任务的知识。在传统的机器学习中,当我们使用一个模型来学习一个新任务时,通常会忘记之前已经学到的知识,这被称为灾难性遗忘。
弹性权重巩固通过对模型中每个参数的重要性进行建模,并将其视为先前任务的知识,来解决灾难性遗忘问题。具体来说,EWC方法根据之前任务的损失函数曲线的曲率和参数的敏感度,计算每个参数的重要性权重。然后,这些权重被用来范围化每个参数的权重更新步长,以便在学习新任务时保护先前任务的知识。
EWC方法的核心思想是在保护先前任务的相关参数的同时,允许当前任务的参数发生一定的改变。通过限制参数的变动范围,EWC可以在学习新任务时平衡先前任务的知识保留和新任务的学习需求。
EWC方法包含以下几个步骤:
-
训练一个基础模型来完成第一个任务,并且记录下该模型的参数;
-
为第一个任务计算每个参数的 Fisher信息矩阵,并将其用于计算每个参数的重要性权重;
-
训练新模型来完成第二个任务,并在训练过程中使用重要性权重来规范化参数更新;
-
重复以上步骤,通过使用不同的 Fisher信息矩阵和重要性权重来处理多个任务。
总结来说,弹性权重巩固是一种用于解决机器学习中灾难性遗忘问题的方法,通过对参数重要性建模和限制参数变动范围来保护先前任务的知识。它可以帮助机器学习模型在学习新任务时保持对之前任务的记忆和知识。
Fisher矩阵
Fisher信息矩阵是统计学中的一种工具,常用于估计参数的方差和协方差。在机器学习中,Fisher信息矩阵也被用来度量模型参数对损失函数的敏感度,从而可以用于衡量参数的重要性。
对于一个参数向量θ和一个损失函数L(θ),Fisher信息矩阵的定义如下:
I(θ) = E[(∇L(θ)) * (∇L(θ))^T]
其中,∇L(θ)表示损失函数L(θ)相对于参数θ的梯度,*表示矩阵乘法,(·)^T表示矩阵的转置操作,E[·]表示期望值。
Fisher信息矩阵的每个元素I_ij表示损失函数L对参数 θ_ i 和 θ_ j 的共同变化的敏感度程度。如果一个参数的Fisher信息矩阵的某个元素的值很大,那么说明该参数对损失函数的变化非常敏感,即该参数在模型训练中起到了重要的作用。
在机器学习中,特别是在梯度下降等优化算法中,Fisher信息矩阵通常用于计算参数更新的步长。使用Fisher信息矩阵进行归一化可以保护先前任务的知识并避免灾难性遗忘,如EWC方法中所使用的。
需要注意的是,计算Fisher信息矩阵通常需要对整个训练数据集进行遍历和计算梯度,因此在大规模数据集和复杂模型中可能会变得非常耗时和昂贵。因此,在实际应用中,通常会采用一些近似方法来估计Fisher信息矩阵或使用其它代替方法来解决参数重要性的衡量问题。