基本上,情感识别方法可以分为两类。第一个是基于非生理信号,如面部表情图像[、身体手势[6]和语音信号[7]。第二种是基于生理信号,如脑电图(EEG)[8]、肌电图(EMG)[9]和心电图(ECG)[10]
基本上,有两种主要的方法来描述人类的情绪[15],即离散的基本情感描述方法和维度方法。对于离散的基本情感描述方法,情绪分为一组离散状态,例如六种基本情绪(即喜悦、悲伤、惊讶、恐惧、愤怒和厌恶)[16]。与离散情感描述方法不同,维度方法以连续形式描述情绪,其中情绪的特征是三个维度(效价、唤醒和支配)[17][18]或简单的两个维度(效价和唤醒),其中效价维度主要表征情绪的积极或消极程度,而唤醒维度旨在表征情绪所激 发或路径的程度
典型的EEG情绪识别方法通常由鉴别EEG特征提取部分和情感分类部分两大部分组成。
基本上,用于情感识别的EEG特征一般可以分为两类,即时域特征类型和频域特征类型。
时域特征,如hjorth特征[22]、分形维数特征[23]和高阶交叉特征[24],主要捕获脑电信号的时间信息。
最常用的频域特征提取方法之一是将脑电信号分解成几个频段,例如,δ波段(1-3Hz)、θ波段(4-7Hz)、α波段(8-13Hz)、β波段(14-30Hz)和γ波段(31-50Hz)[20][25][26][27],然后从每个频段分别提取EEG特征。
常用的脑电特征包括微分熵(DE)特征[28][29]、功率谱密度(PSD)特征[30]、微分不对称性(DASM)特征[23]、理性不对称(RASM)特征[31]和差分尾度(DCAU)特征[18]。
神经网络(GNN)[42]旨在建立图论下的神经网络,以应对图域中的数据。
图卷积网络(GCNN)[43]是将CNN与谱理论[44]相结合,是传统CNN方法的扩展。
与经典的CNN方法相比,GCNN在处理离散空间域[45]中信号的鉴别特征提取方面更有利
更重要的是,GCNN方法提供了一种有效的方法来描述图不同节点之间的内在关系,这为探索EEG情绪识别过程中多个EEG通道之间的关系提供了一种潜在的方法。
受 GCNN 模型成功的启发,在本文中,我们将通过图表示方法研究多通道 EEG 情感识别问题,其中每个 EEG 通道对应一个顶点节点,而两个不同顶点节点之间的连接对应于图的边。虽然 GCNN 可用于根据其空间位置描述不同节点之间的连接,但我们应该在应用各种 EEG 通道之间建立情感识别模型之前预先确定各种 EEG 通道之间的连接。另一方面,值得注意的是,EEG通道之间的空间位置连接与它们之间的功能连接不同。换句话说,更紧密的空间关系可能无法保证更紧密的函数关系,而函数关系将有助于情感识别中的判别脑电图特征提取。因此,根据图节点的空间位置预先确定图节点的连接是不合理的。
为了缓解 GCNN 方法的局限性,本文提出了一种新的动态图卷积神经网络 (DGCNN) 模型来学习各种 EEG 通道之间的判别 EEG 特征以及内在关系,例如函数关系。具体来说,为了学习各种脑电通道之间的关系,我们提出了一种新的方法,通过学习邻接矩阵来构造图的各个顶点节点之间的连接。
邻接矩阵的条目随着模型训练过程中图模型参数的变化自适应地更新。因此,与 GCNN 方法相比,DGCNN 学习的邻接矩阵将更有用,因为它捕获了 EEG 通道的内在连接,因此它能够提高网络的判别能力
本文的其余部分安排如下:在第二节中,我们将简要回顾图论的初步内容。在第三节中,我们将提出了基于该模型的DGCNN模型和EEG情感识别方法。广泛的实验在第四节中进行。最后,我们在第 V 节中总结了论文。