【配置深度学习环境(RTX 4070)】

步骤 操作

1. 安装NVIDIA 驱动

安装NVIDIA 驱动:
下载最新驱动(官方地址):链接: 下载NVIDIA 驱动官方地址
检查是否安装成功

nvidia-smi

如果显示 RTX 4070 的信息,说明驱动安装成功 。

2. 卸载旧的 CUDA & cuDNN

如果之前安装了 CUDA 11.x 或 12.x,建议卸载并重新安装,避免兼容性问题:
打开 Windows 设置 → 应用 → 已安装的应用
卸载 CUDA、cuDNN
重启电脑

3. 安装 CUDA 12.1 + cuDNN 8.9

虽然 RTX 4070 官方支持 CUDA 12.3+,但 PyTorch 目前只支持 CUDA 12.1,所以建议安装 CUDA 12.1。

下载并安装 CUDA 12.1
CUDA 12.1 官方下载地址:链接: CUDA 12.1 官方下载
Windows 版本选择:
Installer Type: exe (network installer)
Download 并安装
安装后,检查是否成功:

nvcc --version

应该显示:

Cuda compilation tools, release 12.1, V12.1.x

下载并安装 cuDNN 8.9
cuDNN 8.9 官方下载地址:链接: cuDNN 8.9 官方下载
下载 cuDNN 8.9 for CUDA 12.1
解压并手动添加到 CUDA 目录
将 cudnn--windows-x64-v8.9..zip 解压到 CUDA 目录:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1

添加 cuDNN 路径到环境变量
打开 系统环境变量
在 Path 里添加:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin
验证 cuDNN

echo %PATH% | findstr "cudnn"

4. 安装 Anaconda

如果你之前已经安装 Anaconda,可以直接使用它。如果不确定,可以先卸载:

conda install anaconda-clean
anaconda-clean --yes

然后重新安装 最新版 Anaconda: Anaconda 官方下载,连接:链接: Anaconda 官方下载
安装后,创建新的 PyTorch 环境:

conda create -n pytorch-gpu python=3.10 -y
conda activate pytorch-gpu

5. 安装 PyTorch(CUDA 12.1 版本)

RTX 4070 需要 CUDA 12.1 以上版本,但 PyTorch 目前只支持 CUDA 12.1,所以必须安装 CUDA 12.1 兼容版本:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

不要安装 +cpu 版本的 PyTorch,否则仍然无法使用 GPU!

6. 验证 PyTorch GPU 是否可用

安装完成后,打开 Python 终端,运行:

python
import torch
print("PyTorch 版本:", torch.__version__)
print("CUDA 版本:", torch.version.cuda)
print("CUDA 是否可用:", torch.cuda.is_available())
print("GPU 设备数量:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("GPU 设备名称:", torch.cuda.get_device_name(0))
如果 torch.cuda.is_available() 返回 True,说明 PyTorch 已成功启用 GPU 。

7. 运行 nvidia-smi 检查显卡状态

nvidia-smi

应该显示 你的 RTX 4070 以及 CUDA 12.1,并且 GPU 使用率、显存占用等信息。

补充:
1. 查看所有虚拟环境
在终端中输入以下命令,可以列出你当前 conda 环境下的所有虚拟环境:

conda env list

或者使用简短的命令:

conda info --envs

这个命令将列出所有环境以及它们所在的路径。当前激活的环境会有一个 * 标记。

2. 激活一个虚拟环境
假设你想激活一个名为 pytorch-gpu 的虚拟环境,可以运行:

conda activate pytorch-gpu

这样,你就可以进入该虚拟环境,并在其中执行相关的 Python 操作。

3. 查看当前激活的环境
激活环境后,可以通过以下命令确认当前激活的环境:

conda info

输出会显示当前的环境和一些配置信息,确认你当前的环境是哪个。

4. 列出当前虚拟环境中的已安装库
在当前激活的环境下,运行以下命令来查看已安装的包及其版本:

conda list

这会列出所有已安装的包,包括它们的版本和依赖信息。

5. 创建新的虚拟环境
如果你需要创建一个新的虚拟环境,可以运行以下命令:

conda create --name new-env python=3.10

这将创建一个名为 new-env 的新环境,并且指定使用 Python 3.10 版本。

6. 删除虚拟环境
如果你不再需要某个虚拟环境,可以通过以下命令将其删除:

conda env remove --name pytorch-gpu

这将删除名为 pytorch-gpu 的环境。

<think>好的,用户遇到了Git合并时本地更改会被覆盖的问题,需要解决方案。根据之前的引用资料,解决方法主要有commit、stash和revert三种。首先,我得确认用户的具体情况,比如他们的本地更改是否已经完成,是否需要保留,或者是否可以丢弃。用户可能不太清楚这三种方法的适用场景,需要详细解释每个选项的步骤和优缺点。比如,commit适用于需要保留更改的情况,stash适合临时保存以便后续恢复,而revert则是直接撤销更改,适用于不需要保留的情况。需要结构清晰,分点说明,每个方法都给出操作步骤和适用场景,帮助用户理解哪种情况最适合他们。还要注意使用中文,避免技术术语过于复杂,让用户容易理解。同时,生成相关问题,可能涉及如何恢复stash的内容,或者如何避免频繁冲突等,扩展用户的知识点。另外,要确保LaTeX格式正确,但在这个问题中可能用不上数学公式,所以主要关注代码块和引用标识。检查引用是否正确,比如引用[^1]和[^2]的来源是否相关,用户提供的引用内容是否准确对应解决方案。 最后,确保回答真实可靠,操作步骤准确无误,避免误导用户。可能还需要提醒用户根据具体情况选择方法,比如如果有未完成的实验性代码,stash可能是更好的选择,而如果是确定要保留的修改,则应该commit。</think>要解决Git合并时本地更改被覆盖的问题,可根据不同场景选择以下三种方法: ### 一、提交本地更改(commit) **适用场景**:当本地更改已测试通过且需要保留到版本历史中。 **操作步骤**: 1. 将改动添加到暂存区: ```bash git add . # 添加所有文件 # 或指定文件 git add file1.txt file2.py ``` 2. 提交更改并添加描述: ```bash git commit -m "完成用户登录模块优化" ``` 3. 执行合并操作: ```bash git merge origin/main ``` **优点**:保留完整的开发记录,便于后续追溯[^1]。 ### 二、暂存更改(stash) **适用场景**:需要临时保存未完成的修改(如调试代码),优先处理合并操作。 **操作步骤**: 1. 保存当前工作状态: ```bash git stash # 可选添加备注 git stash save "用户登录模块调试代码" ``` 2. 查看暂存记录列表: ```bash git stash list ``` 3. 合并远程分支: ```bash git merge origin/main ``` 4. 恢复暂存内容: ```bash git stash pop # 恢复并删除最近一次暂存 # 或指定特定暂存 git stash apply stash@{1} ``` **优点**:保持工作目录整洁,特别适合处理紧急合并任务[^2]。 ### 三、撤销本地更改(revert) **适用场景**:本地修改可丢弃(如实验性代码或错误修改)。 **操作步骤**: 1. 撤销所有未提交的修改: ```bash git checkout -- . # 全部文件 # 或指定文件 git checkout -- file1.txt ``` 2. 执行合并操作: ```bash git merge origin/main ``` **风险提示**:此操作不可逆,需确认文件无需保留。 --- ### 对比决策表 | 方法 | 保留记录 | 可恢复性 | 适用阶段 | |---------|----------|----------|------------------| | commit | ✅ | ✅ | 功能开发完成时 | | stash | ❌ | ✅ | 开发中途临时切换 | | revert | ❌ | ❌ | 放弃无效修改 | ### 扩展应用场景 - 当存在多个暂存时,可用`git stash list`查看记录,通过`git stash apply stash@{n}`精准恢复 - 合并后出现冲突时,可使用`git mergetool`可视化工具解决冲突 - 长期分支开发推荐使用`git rebase`保持提交历史线性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值