配置深度学习环境(RTX 4070)
步骤 操作
1. 安装NVIDIA 驱动
安装NVIDIA 驱动:
下载最新驱动(官方地址):链接: 下载NVIDIA 驱动官方地址
检查是否安装成功
nvidia-smi
如果显示 RTX 4070 的信息,说明驱动安装成功 。
2. 卸载旧的 CUDA & cuDNN
如果之前安装了 CUDA 11.x 或 12.x,建议卸载并重新安装,避免兼容性问题:
打开 Windows 设置 → 应用 → 已安装的应用
卸载 CUDA、cuDNN
重启电脑
3. 安装 CUDA 12.1 + cuDNN 8.9
虽然 RTX 4070 官方支持 CUDA 12.3+,但 PyTorch 目前只支持 CUDA 12.1,所以建议安装 CUDA 12.1。
下载并安装 CUDA 12.1
CUDA 12.1 官方下载地址:链接: CUDA 12.1 官方下载
Windows 版本选择:
Installer Type: exe (network installer)
Download 并安装
安装后,检查是否成功:
nvcc --version
应该显示:
Cuda compilation tools, release 12.1, V12.1.x
下载并安装 cuDNN 8.9
cuDNN 8.9 官方下载地址:链接: cuDNN 8.9 官方下载
下载 cuDNN 8.9 for CUDA 12.1
解压并手动添加到 CUDA 目录
将 cudnn--windows-x64-v8.9..zip 解压到 CUDA 目录:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
添加 cuDNN 路径到环境变量
打开 系统环境变量
在 Path 里添加:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin
验证 cuDNN
echo %PATH% | findstr "cudnn"
4. 安装 Anaconda
如果你之前已经安装 Anaconda,可以直接使用它。如果不确定,可以先卸载:
conda install anaconda-clean
anaconda-clean --yes
然后重新安装 最新版 Anaconda: Anaconda 官方下载,连接:链接: Anaconda 官方下载
安装后,创建新的 PyTorch 环境:
conda create -n pytorch-gpu python=3.10 -y
conda activate pytorch-gpu
5. 安装 PyTorch(CUDA 12.1 版本)
RTX 4070 需要 CUDA 12.1 以上版本,但 PyTorch 目前只支持 CUDA 12.1,所以必须安装 CUDA 12.1 兼容版本:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
不要安装 +cpu 版本的 PyTorch,否则仍然无法使用 GPU!
6. 验证 PyTorch GPU 是否可用
安装完成后,打开 Python 终端,运行:
python
import torch
print("PyTorch 版本:", torch.__version__)
print("CUDA 版本:", torch.version.cuda)
print("CUDA 是否可用:", torch.cuda.is_available())
print("GPU 设备数量:", torch.cuda.device_count())
if torch.cuda.is_available():
print("GPU 设备名称:", torch.cuda.get_device_name(0))
如果 torch.cuda.is_available() 返回 True,说明 PyTorch 已成功启用 GPU 。
7. 运行 nvidia-smi 检查显卡状态
nvidia-smi
应该显示 你的 RTX 4070 以及 CUDA 12.1,并且 GPU 使用率、显存占用等信息。
补充:
1. 查看所有虚拟环境
在终端中输入以下命令,可以列出你当前 conda 环境下的所有虚拟环境:
conda env list
或者使用简短的命令:
conda info --envs
这个命令将列出所有环境以及它们所在的路径。当前激活的环境会有一个 * 标记。
2. 激活一个虚拟环境
假设你想激活一个名为 pytorch-gpu 的虚拟环境,可以运行:
conda activate pytorch-gpu
这样,你就可以进入该虚拟环境,并在其中执行相关的 Python 操作。
3. 查看当前激活的环境
激活环境后,可以通过以下命令确认当前激活的环境:
conda info
输出会显示当前的环境和一些配置信息,确认你当前的环境是哪个。
4. 列出当前虚拟环境中的已安装库
在当前激活的环境下,运行以下命令来查看已安装的包及其版本:
conda list
这会列出所有已安装的包,包括它们的版本和依赖信息。
5. 创建新的虚拟环境
如果你需要创建一个新的虚拟环境,可以运行以下命令:
conda create --name new-env python=3.10
这将创建一个名为 new-env 的新环境,并且指定使用 Python 3.10 版本。
6. 删除虚拟环境
如果你不再需要某个虚拟环境,可以通过以下命令将其删除:
conda env remove --name pytorch-gpu
这将删除名为 pytorch-gpu 的环境。