一、下载CUDA
1,首先打开NVIDIA的设置,查看对应的CUDA的版本。
2,CUDA官网下载对应的CUDA版本,官网地址-https://developer.nvidia.com/zh-cn/cuda-toolkit
这里在安装的时候记得将 Visual Studio Integration选项取消(没什么用而且会影响下载)
这里的具体步骤可以参考这篇博客Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12.3对应的pytorch版本-CSDN博客
二、下载cudnn
这里的具体步骤可以参考这篇博客本地配置Python+PyCharm+PyTorch+CUDA深度学习环境_怎么让pytorch支持cuda pycharm-CSDN博客
去官网下载cuDNNCUDA Deep Neural Network (cuDNN) | NVIDIA Developer
然后可以参考这篇博客保姆级python环境配置(anaconda+pycharm+cuda+cudnn+pytorch)_pycharm、nvcc、anaconda-CSDN博客
三、下载torch和torchvision
这里可以参考这篇博客的对应内容-Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12.3对应的pytorch版本-CSDN博客
在官网安装速度相对较慢,而且受国内外网络影响可能会安装失败,相比较而言用国内的镜像网站能大大提高成功率,既快速又简捷,下面展示镜像网站的安装方式
进入镜像网站download.pytorch.org/whl/torch_stable.html
四、更改yolov5上的device
五、成功运行
六、最重要的一点,非常重要,感谢以下文章的作者
WIN10安装CUDA保姆级教程[2023.5.7更新]-CSDN博客
本地配置Python+PyCharm+PyTorch+CUDA深度学习环境_怎么让pytorch支持cuda pycharm-CSDN博客
Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12.3对应的pytorch版本-CSDN博客
保姆级python环境配置(anaconda+pycharm+cuda+cudnn+pytorch)_pycharm、nvcc、anaconda-CSDN博客