win10-4070配置yolov5的pytorch2.0.0\cuda12.3

一、下载CUDA

        1,首先打开NVIDIA的设置,查看对应的CUDA的版本。

        

        2,CUDA官网下载对应的CUDA版本,官网地址-https://developer.nvidia.com/zh-cn/cuda-toolkit

        这里在安装的时候记得将 Visual Studio Integration选项取消(没什么用而且会影响下载)

        

这里的具体步骤可以参考这篇博客Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12.3对应的pytorch版本-CSDN博客

二、下载cudnn

这里的具体步骤可以参考这篇博客本地配置Python+PyCharm+PyTorch+CUDA深度学习环境_怎么让pytorch支持cuda pycharm-CSDN博客

去官网下载cuDNNCUDA Deep Neural Network (cuDNN) | NVIDIA Developer

然后可以参考这篇博客保姆级python环境配置(anaconda+pycharm+cuda+cudnn+pytorch)_pycharm、nvcc、anaconda-CSDN博客

三、下载torch和torchvision

这里可以参考这篇博客的对应内容-Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12.3对应的pytorch版本-CSDN博客

在官网安装速度相对较慢,而且受国内外网络影响可能会安装失败,相比较而言用国内的镜像网站能大大提高成功率,既快速又简捷,下面展示镜像网站的安装方式

进入镜像网站download.pytorch.org/whl/torch_stable.html

四、更改yolov5上的device

五、成功运行

六、最重要的一点,非常重要,感谢以下文章的作者

WIN10安装CUDA保姆级教程[2023.5.7更新]-CSDN博客

本地配置Python+PyCharm+PyTorch+CUDA深度学习环境_怎么让pytorch支持cuda pycharm-CSDN博客

Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12.3对应的pytorch版本-CSDN博客

保姆级python环境配置(anaconda+pycharm+cuda+cudnn+pytorch)_pycharm、nvcc、anaconda-CSDN博客

yolov5,如何使用CPU/GPU运行——安装环境及依赖(详细,简单易懂)_yolov5 gpu-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值