vLLM vs SGLang:大模型推理框架,谁更适合你的需求?

SGLang和vLLM 大模型推理引擎对比在大模型技术落地的过程中,推理效率和开发灵活性是开发者最关注的两大痛点。开源社区涌现了多个优化框架,其中vLLMSGLang近期热度颇高。

两者看似定位相似,但设计理念和适用场景却有显著差异。本文从核心技术、使用场景等维度展开对比,帮你找到最适合的解决方案。

一、核心定位:吞吐量优先 vs 交互式编程

1、vLLM:极致推理性能的“速度狂魔”

vLLM由加州大学伯克利分校团队开发,核心目标是提升大模型推理的吞吐量,尤其适合高并发、批处理的场景。其招牌技术PagedAttention,灵感来自操作系统的内存分页管理,通过动态管理KV Cache内存碎片,显著提高GPU利用率。实测中,vLLM可将70B大模型的吞吐量提升24倍,且原生支持HuggingFace模型,几乎无需修改代码即可部署。

2、 SGLang:面向交互的“编程增强器”

SGLang由清华和UC伯克利联合推出,主打复杂提示词(prompt)的灵活编排

它通过RadixAttention缓存技术异步并行执行等设计,优化多轮对话、树状采样、外部函数调用等场景的编程体验。开发者可以用Python原生语法实现动态控制流(如循环、分支),特别适合智能体(Agent)、游戏NPC等需要状态管理的应用。

2、vLLM vs SGLang 适用场景对比表

代表推荐程度

img

3、总结

总体而言,vLLM 在模型支持和应用生态方面具有优势,而 SGLang 在推理性能优化表现相对出色。目前vLLM和SGLang的代码库已开始互相借鉴(如vLLM计划引入RadixAttention),但短期内仍是差异化竞争。

对于企业级应用,甚至可以组合使用:用vLLM作为底层推理引擎,配合SGLang编排上层交互逻辑,兼顾性能与灵活性。

所以,选择用哪一个?关键是看你的需求是什么:

  • 追求速度和部署简便→ vLLM
  • 需要灵活控制生成逻辑→ SGLang
  • 鱼和熊掌都想要→ 关注两者的融合进展,或组合使用

大模型落地没有万能钥匙,理解框架背后的设计哲学,才能找到最优解。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### SGLangvLLM简介 SGLang是一种高级编程语言框架,专为优化大型语言模型(LLM)的推理过程而设计[^3]。此工具不仅限于作为简单的推理引擎,还提供了复杂的抽象层次来简化开发者的操作流程。通过引入类似于编译器前端的概念,SGLang能够好地处理并行计算任务以及资源管理。 相比之下,vLLM是一个专注于提升大规模预训练模型部署效率的技术方案集合体[^2]。它最初因paged attention机制支持连续批处理功能而受到广泛关注。这些特性使得vLLM能够在不牺牲精度的前提下显著提高吞吐量,并减少延迟时间。 ### 技术特点对比 #### 性能表现 - **SGLang**: 提供了一种新颖的方法论用于加速神经网络预测阶段的工作负载分配策略;同时支持多种硬件平台间的无缝切换以实现最佳运行效果。 - **vLLM**: 主要依靠内存分页技术持续批次调度算法改善数据流传输速率及降低CPU-GPU间通信开销,在实际应用环境中表现出优异的成绩。 #### 易用性灵活性 - **SGLang**: 设计之初就考虑到了易用性的需求,允许开发者编写简洁直观的代码片段来进行复杂逻辑控制。此外,其内置了许多实用函数库帮助快速搭建原型系统或生产环境下的解决方案。 - **vLLM**: 虽然本身并不提供额外的应用构建辅助工具集,但是凭借强大的底层架构可以轻松集成第三方API接口完成特定业务目标设定下的高效运作模式配置工作。 ### 应用场景分析 对于那些希望获得高程度自动化水平并且追求极致性能体验的研究人员来说,SGLang无疑是最合适的选择之一。而对于已经具备一定技术积累的企业级客户而言,则可能加倾向于采用成熟稳定的vLLM产品线来满足日常运营中的各种挑战性要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值