这份报告是《2025“人工智能+”行业发展蓝皮书》,由上海交通大学行业研究院发布。报告全面梳理了人工智能(AI)技术的发展现状、趋势、应用场景以及相关政策和伦理问题,旨在为政府、企业和研究机构提供决策参考。以下是对这份报告的核心内容解读:
一、人工智能技术发展现状与趋势
- 技术范式演进:AI技术经历了从规则驱动、统计学习到深度学习的演进,目前正处于深度学习时代,Transformer架构成为主流。
- 大模型技术:大模型(如GPT系列、DeepSeek等)成为实现通用智能的重要桥梁,通过海量数据训练,展现出强大的语言理解和生成能力。
- 技术突破与竞争:全球AI技术呈现多极化竞争态势,美国、中国、欧洲等国家和地区在大模型研发、政策扶持等方面展开激烈竞争。
- 国际合作与治理框架:国际合作与治理框架的构建成为AI发展的关键,2025年巴黎人工智能行动峰会强调了开放、透明、安全等原则。
二、AI赋能相关产业领域的典型应用场景
- 制造业:AI在研发设计、生产优化、质量管控、供应链管理等方面形成系统性突破,推动制造业向智能生态跃迁。
- 信息科技:AI在软件开发、通信网络、量子信息等领域深度赋能,推动信息产业的智能化转型。
- 材料产业:AI加速新材料研发,通过高通量筛选、性能预测、逆向设计等技术,缩短研发周期,降低研发成本。
- 能源产业:AI在核能、核聚变、氢能等领域展现巨大潜力,优化能源生产、存储和传输效率。
- 健康医疗:AI在医疗诊断、药物研发、健康管理等领域广泛应用,推动医疗服务的智能化和个性化。
- 空间产业:AI在城市空间规划、低空经济、卫星互联网等领域赋能,推动空间产业的智能化发展。
- 金融服务业:AI在智能风控、财富管理、金融基础设施等领域创新实践,提升金融服务的效率和普惠性。
三、国内外人工智能产业政策及趋势分析
- 国内政策:中国从早期布局到战略升级,形成了从战略布局到深度应用的全周期政策体系,强调技术攻关、场景应用和生态构建。
- 国际政策:美国、欧盟、英国、日本等国家和地区纷纷出台AI产业政策,强调技术创新、伦理治理和国际竞争。
- 监管沙盒:各国积极探索“监管沙盒”制度,以平衡AI创新与风险防范。
- 未来趋势:中国将构建“监管科技深化-制度建设-积极参与国际竞争”的新型治理体系,推动AI技术的健康发展。
四、人工智能治理与伦理
- 人机关系和伦理问题:AI的发展改变了人机关系,引发了关于生命伦理、责任归属、歧视与偏见等伦理挑战。
- 数据和隐私保护:AI数据的收集、存储、使用和共享过程中存在隐私侵犯风险,需要通过制度建设和技术手段加以保护。
- 内容安全和虚假信息:AI生成的虚假内容可能对社会造成负面影响,需要加强内容标识和溯源技术。
- 知识产权和责任归属:AI技术的发展引发了知识产权归属和责任界定的复杂问题,需要通过法律和技术创新加以解决。
五、报告的核心观点与建议
- 技术创新与产业赋能:AI技术的快速发展为各产业带来了新的机遇和挑战,需要加强技术创新和产业赋能。
- 政策支持与伦理治理:政府应加强政策支持,完善伦理治理框架,推动AI技术的健康发展。
- 国际合作与竞争:AI技术的全球化发展需要国际合作与竞争,中国应积极参与国际规则制定,提升国际影响力。
- 可持续发展:AI技术的发展应注重可持续性,包括能源效率、社会公平和普惠性。
六、报告的意义
这份报告为理解人工智能技术的发展现状、趋势和应用场景提供了全面的视角,同时也为政策制定者、企业决策者和研究人员提供了宝贵的参考。报告强调了AI技术在推动各产业发展中的重要作用,同时也指出了技术发展过程中需要关注的伦理和治理问题。
部分内容预览
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。