经典控制理论建立模型
1.分析系统
首先,在我们面对一个需要进行建模的系统时,需要观察思考如下几点:
· 系统的输入输出。
· 系统的物理,化学,电力等方面的规律。
2.建立模型
在分析了系统之后,我们接下来进行建模。所谓建模,就是将输入输出运用微分方程建立一个函数,这里要注意运用物理和电路等方面的定律,一般都与导数或积分有关,比如物理学中速度与位移的关系,电路中电流与电容、电压的关系。最后消去中间变量,最后得出整个系统输入与输出关系的微分方程式。以下参考知乎,为什么选择微分方程建模。
*控制论是一门喜欢简明与精确的学科,虽然在大多数问题中简明与精确取其一就十分难得了。它研究的对象是具有自调节能力的系统。这些系统往往有着明确的运作规律与调节机制。自然界与人类社会中有许多的现象虽然有一定的规律,但这些规律只能以一种动态的方式描述,就像上述的捕食模型一样,我们仅仅知道系统在每个状态有着什么样的演变趋势。这个时候我们最关键的数学工具就是微分方程,微分方程是对函数与其导数间关系的一种描述,也就是说它能够刻画系统的每一个动态过程,因此恰好能够解决对系统的描述只有动态规律的控制论问题。 *
举个简单的例子,对以下系统建模:
写出输入电压 u r u_r ur与输出电压 u c u_c uc之间的微分方程式。
根据基尔霍夫定律,可写出以下方程组:
i R + L d i d t + u c = u r iR+L\frac{d_i}{d_t}+u_c=u_r iR+Ldtdi+uc=ur
u c = 1 C ∫ i d t u_c=\frac{1}{C}\int i dt uc=C1∫idt
现在我们已经建立了关于输入 u c u_c uc和输出 u r u_r ur之间的函数关系,但其中有电流i这个未知变量,我们将其整理消除。整理后得出:
L C d 2 u c ( t ) d t 2 + R C d u c ( t ) d t + u c ( t ) = u r ( t ) LC\frac{d^2u_c(t)}{dt^2}+RC\frac{du_c(t)}{dt}+u_c(t)=u_r(t) LCdt2d2uc(t)+RCdtduc(t)+uc