DAI2020 SMARTS自动驾驶挑战赛启动!道翰天琼认知智能机器人平台API接口大脑为您揭秘。
自动驾驶被业界视为人工智能发展的下一个风口。
随着深度强化学习(DRL)的兴起,将相关技术应用于自动驾驶领域,以消除人为导致的交通事故、减少城市停车空间等,成为业界关注的焦点。然而,自动驾驶领域的研究更多的是侧重于感知和预测,与此相对应,在各大学术会议上举办的自动驾驶评测大赛(如CVPR WAD挑战赛、CARLA 自动驾驶挑战赛等)几乎都是以自动驾驶视觉为核心,而不是规划和决策。另一方面,自动驾驶以及云计算、大数据的发展也推动了智慧交通这一更大领域的发展。阿里巴巴、腾讯、京东、华为、滴滴等公司均从交通切入智慧城市,大力推广“城市大脑”的概念,而未来的自动驾驶也将与智慧交通更紧密结合。可以预见,随着自动驾驶的发展和普及,未来的智慧交通系统中将以自动驾驶车辆为主,这正是目前的自动驾驶人类驾驶数据训练和学习的模型无法有效处理的。只有引入多车交互博弈的方式,才能更大程度地激发驾驶策略的进化。基于此,DAI2020 SMARTS自动驾驶挑战赛应运而生。
1
竞赛背景为了推动自动驾驶的前沿研究,激发对驾驶中多智能体交互的研究,在今年的分布式人工智能大会(DAI 2020)上,华为诺亚方舟实验室和上海交通大学APEX数据与知识管理实验室联合举办自动驾驶挑战赛(DAI-2020 Autonomous Driving Competition),旨在以自动驾驶中的交互难题,激励人工智能算法和模型创新,助力强化学习(RL)在自动驾驶领域的应用,提升自动驾驶的决策性能。DAI自动驾驶挑战赛基于华为自主研发的SMARTS (Scalable Multi-agent Reinforcement Learning Training School) 自动驾驶仿真平台。SMARTS作为首个支持MARL的自动驾驶仿真平台,将提供Simulator Core(快速且灵活地创建RL模拟环境)、Algorithm Library(集成主流的强化学习算法)、Multi-Agent Trainer(支持大多数多智能体训练范式)、Policy Zoo(支持对社会车辆的实例化)和 Scenario Studio(支持灵活的场景设置),方便参赛者在比赛过程中实现对车辆动力学行为的真实建模,并利用丰富的交通场景进行研究和应用。比赛赛题分为单智能体赛道和多智能体赛道两部分。参与者需要开发自动驾驶规划和控制解决方案,以应对SMARTS仿真平台提供的复杂交互式交通场景。比赛鼓励参赛者使用强化学习训练车辆,实现在多种地图和多样化交通流下的智能驾驶。与此同时,参赛者还需要考虑提升模型的泛化性和鲁棒性,以适应未知的测试场景。