时域采样,频域为什么周期延拓了

本文探讨了采样理论中的重要概念——频域周期延拓,通过实例说明了不同频率的连续余弦信号在相同采样频率下采样后可能无法区分。解释了当两个信号的频率差为采样频率的整数倍时,它们的采样像会相同,导致信息丢失。此外,阐述了奈奎斯特定理,强调采样频率必须大于信号带宽以避免混叠干扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

频域周期延拓只是表面现象,其实质是不同的信号采样后的像可能相同,不可区分。

如果硬要做实验,还是要有一定的编程基础。起码要整一个声音出来,让你听一听。可是你要重复这一实验可能又太难了,所以我还是讲一讲简单的数学原理, 并用简单的三角函数及程序验证,让你看一看更直观。

已知 :

(1) 1Hz的连续余弦信号x1(t), 对其采样, 采样频率是 Fs = 10 Hz, 得到了1连串的数值x1[n] ;

(2) 11Hz的连续余弦信号x2(t), 对其采样, 采样频率是Fs = 10 Hz, 得到了1连串的数值x2[n]

画出x1[n]和x2[n]的图像,比较它们的异同。
%% 用 Matlab 运行
clc; close all;
Fs = 10 % 采样频率 10 Hz
Ti = 1.0/Fs % 采样时间间隔
t = 0:Ti:2 % 时间变量 2 秒

%% 信号 1
f1 = 1
x1 = cos(2pif1*t)
figure(1)
subplot(2,1,1)
plot(t, x1,’-o’)
legend(‘x1[n]’)

%% 信号 2 绘图
f2 = 11
x2 = cos(2pif2t)
figure(1)
subplot(2,1,2)
plot(t, x2, 'r-
’)
legend(‘x2[n]’)

你猜这两个信号绘出的时域图有什么区别? 答案是没有区别! 看图:
在这里插入图片描述
在这里插入图片描述
上图对应采样频率11Hz采样点,一族信号。

重要结论: 如果不同的两个连续信号 x1(t)、x2(t)的频率满足一定条件,用频率Fs采样,得到的离散的"像" x1[n]和x2[n]不可区分。

换句话说: 通过对x1(t)的采样, 我们实际上同时得到了x1(t), x2(t), 甚至 x3(t), …, xn(t) 的采样的像。 它们的“像”是完全等价的, 不可区分。这一组信号 x_n(t) 只需满足:x_n(t) = cos( n * Fs + f_1)其中,n 是整数,Fs 是采样频率。

也就是说,任何信号的采样,它不仅表示它自己,它还表示一族信号。这一族信号就是该信号的周期延延。
在数学上,这一族信号中不同的信号间的间隔为nFs。
余下可以不看(1) 验证 x2[n] == x1[n] 我们用x2的变量减x1的变量,得到相位差: = 2
pif2t - 2pif1t = 2pi*(f2-f1)t = 2pi*(f2-f1)[0:Ti: T] = 2pi*(f2-f1)[0:1/Fs: T] = 2pi*(11-1)[0:1/10: T] = 2pi*[0:1:10* T] = 2n 这意味着在相同的时刻,x2与x1始终保持相同的相位差(2 pi 的整数倍)。因为三角正余弦函数的周期是 2 π 2\pi 2π, 两个相位差为 2n 的三角函数 x2[n] 与 x1[n] 相等。
(2)推广: 当 f2-f1 = n*Fs 时, 上面的结论仍然满足,n 是整数 。

(3) 坏消息: 因为不同的信号有相同的像,所以我们不能仅通过它们的像来判断原始信号到底是哪一个。于是,为了恢复出原信号, 就需要知道原信号的分布频段, 通过设计相应的低通或带通滤波器, 将其它像抑制掉, 就可以啦。
下面是信号恢复的原理。当信号的带宽比较宽(比较胖 )的情况下, 即信号带宽 B > Fs,我们会发现这些像在频率轴上部分叠在一起,无法分开。这种情况就是再好的滤波器也不起作用了。
**所以,采样的时候要保证 Fs > B,否则在频域一定会发生不可逆转的混叠干扰。 这就是著名的奈氏采样定理。**对于实信号,Fs > B = 2B’, 其中 B’ 是信号的正半轴带宽。
在这里插入图片描述

好的,下面是一个使用MATLAB进行频域采样时域周期延拓的动态演示代码。这个代码将展示如何对一个时域信号进行频域采样,并观察其对时域信号的影响。 ```matlab % 频域采样时域周期延拓动态演示 % 清空环境 clear; clc; close all; % 时域信号参数 Fs = 1000; % 采样频率 T = 1/Fs; % 采样周期 L = 1000; % 信号长度 t = (0:L-1)*T; % 时间向量 % 原始信号 f1 = 50; % 信号频率 x = cos(2*pi*f1*t); % 频域采样参数 N = 256; % FFT点数 f = Fs*(0:(N/2))/N; % 频率向量 % 频域采样 Y = fft(x, N); P2 = abs(Y/N); P1 = P2(1:N/2+1); P1(2:end-1) = 2*P1(2:end-1); % 时域周期延拓 x_periodic = repmat(x, 1, 5); % 周期延拓5次 % 绘图 figure; % 原始信号时域图 subplot(3,1,1); plot(t, x); title('原始信号时域图'); xlabel('时间 (s)'); ylabel('幅值'); % 频域采样图 subplot(3,1,2); plot(f, P1); title('频域采样图'); xlabel('频率 (Hz)'); ylabel('幅值'); % 时域周期延拓图 subplot(3,1,3); plot(t, x_periodic(1:L)); title('时域周期延拓图'); xlabel('时间 (s)'); ylabel('幅值'); % 动态演示 figure; for i = 1:5 subplot(3,1,1); plot(t, x); title('原始信号时域图'); xlabel('时间 (s)'); ylabel('幅值'); subplot(3,1,2); plot(f, P1); title('频域采样图'); xlabel('频率 (Hz)'); ylabel('幅值'); subplot(3,1,3); plot(t, x_periodic(1:L)); title('时域周期延拓图'); xlabel('时间 (s)'); ylabel('幅值'); pause(1); end ``` 这个代码首先定义了一个时域信号,然后对其进行频域采样,并观察其频域特性。接着,对时域信号进行周期延拓,并绘制原始信号时域图、频域采样图和时域周期延拓图。最后,通过一个简单的动态演示,展示这些图的变化。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值