DTFT、DFT、各种时域到频域的转换的相互关系
时域信号与频域的信号的关系
无论是连续的还是非连续的,周期信号用傅里叶级数来表示,非周期信号用傅里叶变换来表示
时域信号是连续非周期的,则傅里叶变换后频域信号是连续非周期的
时域信号是连续周期的,则傅里叶级数变换后频域信号是离散非周期的
时域信号是离散的非周期时间信号,则DTFT之后,其频谱是连续的周期函数
时域信号是离散的周期时间信号,则DTFT之后,其频谱是离散的周期函数
采样与奈奎斯特采样定理
采样
奈奎斯特采样定理与归一化角频率
归一化频率就是将整个的横坐标用0~2Π表示,2 pi表示的物理意义就是采样频率
例如:采样频率fs=44.1KHz,则在坐标轴上2 pi的物理意义就是44.1KHz
w=pi/2,表示的实际的物理频率就是11.025KHz;w=pi,表示的实际的物理频率就是22.05KHz
离散时间信号的傅里叶变换(DTFT)
像模拟信号一样,采样信号或数字信号序列也存在着傅里叶变换,通常称作离散时间信号的傅里叶变换,即DTFT;
对连续时间信号在时域内进行采样的结果是频域内频谱的周期延拓,也就是说采样序列的频谱是周期函数,它可以用傅里叶级数表示,傅里叶级数的稀疏就相当于采样序列,因此把一般序列x(n)的DTFT定义为:
DTFT的逆变换为:
DTFT中的级数求和不一定总是收敛的,若x(n)绝对可和,则该级数绝对收敛(充分条件)
傅里叶变换、拉普拉斯变换、Z变换的联系是什么?
具体的可以参考以下网址:
https://www.zhihu.com/question/22085329
同链接: link.
傅里叶变换需要满足一个条件,即所谓的狄利克雷条件(要求信号绝对可积/绝对可和),为了始补,满足这一条件的信号,也能读出它的频率,拉普拉斯变换和Z变换,对频率的含义做出了扩充,使得大多数有用信号都具有了对应的“频率”域表达式,方便对各个器件的设计。
这里,我们并不是通过拉氏变换和Z变换获取不满足狄利克雷条件的函数的傅氏变换。事实上由于收敛域的问题,这些函数的傅氏变换是不收敛的,即使通过拉氏变换和Z变换也不可能获得这些函数的傅氏变换。
拉氏变换和Z变换的意义,是将频率域的某些限制条件A,转化为复频率域中与之等价的相应条件A’,然后在复频域内直接观察信号或系统的拉氏变换或Z变换,看X(s)或X(z)是否满足条件A’,得到相应的结论。用这个结论代替傅里叶变换的结论(因为傅里叶变换不存在,无法得出结论)。
他们之间的关系到底是什么?
首先,傅里叶变换粗略分来包括连续时间傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)。
CTFT是将连续时间信号变换到频域,将频率的含义扩充之后,就得到拉普拉斯变换。
DTFT是将离散时间信号变换到频域,将频率的含义扩充之后,就得到Z变换。
Z变换:
序列x(n)的z变换定义为:
离散时间系统
1.线性系统(满足叠加原理的系统)
2.时不变系统
即系统的特性不随时间而变化,线性时不变系统简称为:LTI
3.线性时不变系统
既满足叠加原理又具有时不变性的系统,线性时不变系统可以用单位脉冲响应来表示
因果系统与非因果系统:
因果:系统的输出y(n)只取决于当前以及过去的输入,即x(n),x(n-1),x(n-2)…
非因果:如果系统的输出y(n)取决于x(n+1),x(n+2),…及系统的输出取决于未来的输入,则是非因果系统,也即不现实的系统。