渗透测试神器AWVS使用教程

简介:
Acunetix Web Vulnerability Scanner(简称AWVS)是一款知名的自动化网络漏洞扫描工具,它通过网络爬虫测试你的网站安全,检测流行安全漏洞。它可以扫描任何可通过Web浏览器访问的和遵循HTTP/HTTPS规则的Web站点和Web应用程序。适用于任何中小型和大型企业的内联网、外延网和面向客户、雇员、厂商和其它人员的Web网站。WVS可以通过检查SQL注入攻击漏洞、XSS跨站脚本攻击漏洞等漏洞来审核Web应用程序的安全性。

在这里插入图片描述

AWVS官网:https://www.acunetix.com/
环境部署:Windows或Linux均可(老规矩,安装非常简单,我在这里仅演示以Docker容器方式安装教程,其他方式不会自行百度安装,不在这里赘述了)

Docker安装教程:

pull 拉取下载镜像
docker pull secfa/docker-awvs

将Docker的3443端口映射到物理机的 13443端口
docker run -it -d -p 13443:3443 secfa/docker-awvs

容器的相关信息
awvs13 username: admin@admin.com
awvs13 password: Admin123
AWVS版本:13.0.200217097

浏览器访问:https://127.0.0.1:13443/ 即可

在这里插入图片描述

工作方式:

1.它将会扫描整个网站,它通过跟踪站点上的所有链接和robots.txt 实现扫描。然后WVS就会映射出站点的结构并显示每个文件的细节.
2.在上述的发现阶段或扫描过程之后,WVS就会自动地对所发现的每一个页面发动一系列的漏洞攻击, 这实质上是横拟黑客的攻击过程,这是一个自动扫描阶段。
3.在它发现漏洞之后,WVS就会在"Alerts Node (警告节点)"中报告这些漏洞. 每一个报告都包含着漏洞信息和如何修复漏洞的建议.
4. 再扫一次,它会将结果保存为文件以备曰后分析以及与以前的扫描相比较,使用报告工具,就可以创建一个专业的报告来总结这次扫描.

功能介绍:

1.WebScanner:全站扫描,Web安全漏洞扫描
2.Site Crawler:爬虫功能,遍历站点目录结构
3.Target Finder:端口扫描,找出web服务器
4.Subdomain Scanner:子域名扫描器,利用DNS查询
5.Blind SQL Injector:盲注工具
6.HTTP Editor:http协议数据包编辑器
7.HTTP Sniffer:HTTP协议嗅探器
8.HTTP Fuzzer:模糊测试工具
9.Authentication Tester:Web认证破解工具
10.Web Srevice Scanner:Web服务扫描器
11.Web Srevice Editor:Web服务编辑器

特点:

1.自动的客户端脚本分析器,允许对 Ajax 和 Web 2.0 应用程序进行安全性测试。
2.业内最先进且深入的 SQL 注入和跨站脚本测试
3.高级渗透测试工具,例如 HTTP Editor 和 HTTP Fuzzer
4.可视化宏记录器帮助您轻松测试 web 表格和受密码保护的区域
5.支持含有 CAPTHCA 的页面,单个开始指令和 Two Factor(双因素)验证机制
6.丰富的报告功能,包括 VISA PCI 依从性报告
7.高速的多线程扫描器轻松检索成千上万个页面
8.智能爬行程序检测 web 服务器类型和应用程序语言
9.Acunetix 检索并分析网站,包括 flash 内容、SOAP 和 AJAX
10.端口扫描 web 服务器并对在服务器上运行的网络服务执行安全检查
11.可导出网站漏洞文件

使用方法:
1.登录进入AWVS控制面板。
在这里插入图片描述
2.添加扫描目标,并设置好对应扫描参数,例如扫描等级,UA等。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述3.等待结束,查看扫描结果。
在这里插入图片描述

本文仅介绍AWVS的简单入门,更多功能自行学习探索,相信你会掌握这一款强大的渗透测试扫描神器,禁止非法扫描,后果自负。

当你懈怠的时候,请想一下你父母期待的眼神。因为有悔,所以披星戴月;因为有梦,所以奋不顾身。

本文转载自天乐博客:https://blog.361s.cn/89.html

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值