FactorySimulation仿真引擎的性能测试

文章讨论了FactorySimulation在离散事件仿真中的性能,强调其在单次和多次仿真速度上的优势。通过一个包含9个复杂车间的工厂模型示例,展示了711台设备、126个装配工位等大量对象的仿真在64秒内完成,证明了其在处理复杂场景时的高效能,并指出其在并行仿真方面的速度提升可达2到25倍,且优化后的速度接近极致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

仿真速度是离散事件仿真(DES)引擎重要的性能指标,它包括两个方面:

(1)单次仿真的速度

(2)多次仿真的速度

显然(1)是(2)的基础。当然,(2)也不是(1)的简单叠加,FactorySimulation支持并行仿真,n次仿真的时间=单次仿真的时间*n/m,其中m=2-25,也就是说,多次仿真速度比串行运行单次仿真的速度快2到25倍(具体取决于CPU核数)。

下面讨论单次仿真速度。一般来讲,单次仿真的速度取决于模型复杂程度以及仿真设置情况。其中模型复杂程度包括静态对象(设备、缓冲区、物流资源等)的数量、移动对象(在制品)的数量、逻辑控制(Method)的复杂性等等,仿真设置情况包括是否记录仿真数据、是否刷新动画、是否记录生产历史、是否产生数据图表等等,显然,关闭仿真动画并减少数据记录,可以提高仿真速度。

下面通过一个例子展示FS的仿真速度,经过调优,FS的仿真速度已经趋于极致。

某工厂(实际情况少有这么复杂的工厂)包括9个车间,每个车间都非常复杂,如下图。其中车间3的内部结构有展示,其余车间结构类似。

 该工厂仿真模型的对象构成如下,共计711台加工设备、126个装配工位,117个缓冲区,108台天车、9套AGV系统、216个AGV站点、108张数据表,加工/装配工序合计20610条。

仿真运行一次,耗时仅64秒。 

 在制品情况如下图,共计产生4167个在制品。

从本例可以看出,FactorySimulation仿真引擎的性能完全可以胜任复杂车间的建模与仿真分析,而且仿真速度较国外软件应该有优势。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值