YOLOv5——云服务器部署

本文详细介绍了如何在恒源智享云平台上创建和使用GPU实例,包括登录注册、选择GPU资源、创建实例、配置镜像、数据导入、权重训练以及利用Xftp7进行文件传输。通过实例操作,讲解了数据在OSS存储和Tmp之间的迁移,以及权重的持久化存储,适合初学者进行云环境实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.登录恒源智享云

链接:恒源云_GPUSHARE-恒源智享云

2.注册登录

点击右上角登录注册

登录

进入控制台

3.创建实例

选择完自己需要的GPU之后可运用官方镜像或者自己配置镜像环境(建议新手先用便宜的试水

亦可在云市场选择需要的GPU

本处使用自己配置的备份镜像:

4.进入实例

创建完实例后,点击JupyterLab进入云环境:

刚创建的云服务器是什么都没有的,需要自己导入相应的数据

ps:查看数据在前一个页面的“我的数据当中”,点击可看到“OSS存储”(云端存储,可永久存储)、“Tmp”(实例对象,即JupterLab的运行端,数据不能久存)

5.数据导入

登录

指令:oss login (输入相应的密码即可登录成功)

将"OSS存储"数据导入"Tmp"中

指令: oss cp oss://datasets/个人数据.zip /hy-tmp/

解压

指令:cd /hy-tmp (进入文件夹)

tar -xvf 需要解压的压缩包名字

训练权重

指令:python train.py

训练完后权重保存在logs

将权重保存在“OSS存储”中避免丢失

指令:1.cd hy-tmp/yolox-pytorch-main

2.cd ./logs

3.mkdir weights

4.mv last_epoch_weights.pth weights

5.tar -cvf ./weights.tar weights

6.oss cp weights.tar oss://datasets/logs

Xftp 7 操作

1.下载Xftp 7

地址:(128条消息) Xftp 7(FTP/SFTP客户端) V7.0.0107 官方中文免费正式版(附文件+安装教程)流楚丶格念的博客-CSDN博客sftp客户端

2.打开Xftp图形化客户端,然后文件->新建

3.输入信息下图信息连接实例

ps:获取实例SSH主机名、实例SSH端口号、实例密码

打开[恒源云控制台],复制登录指令和密码,然后粘贴到文本或编辑器中。

拆解命令

粘贴完成后如下所示:

登录指令:ssh -p 6666 root@i-1.gpushare.com
密码:vKExWbBWnVkszkwaFdh4cPABADSNFGuS
​
命令拆解如下:
实例SSH主机名:i-1.gpushare.com
实例SSH端口号:6666
实例用户名:root
实例密码:vKExWbBWnVkszkwaFdh4cXXXXXXXXXXX

4.然后点击确定,再点击连

5.选择接受并保存

6.将要上传的代码文件或者小型数据集直接拖拽到右侧实例中

### 如何在云服务器部署和运行 YOLOv10 模型 #### 创建并配置云服务器实例 为了成功部署YOLOv10模型,首先需要创建一个合适的云服务器实例。通常建议选择支持GPU加速的服务提供商如恒源云来提高训练效率[^1]。 ```bash # 使用SSH连接到新创建的云服务器实例 ssh root@your_server_ip_address ``` #### 安装必要的依赖项 一旦登录到云服务器,下一步是安装所有必需的软件包和支持库以便能够顺利地构建环境用于YOLOv10模型的训练或推断工作流。 ```bash # 更新现有的软件包列表 apt-get update && apt-get upgrade -y # 安装Python和其他基础工具 apt-get install python3-pip git wget unzip -y # 设置Python虚拟环境(推荐做法) pip3 install virtualenv virtualenv venv_yolov10 source venv_yolov10/bin/activate ``` #### 获取YOLOv10代码仓库 接下来是从GitHub或其他版本控制系统获取最新的YOLOv10项目源码副本,并按照官方文档说明完成初始化设置过程。 ```bash git clone https://github.com/user/yolov10.git /path/to/repo cd /path/to/repo chmod +x setup.sh ./setup.sh ``` #### 准备数据集与预训练权重 对于大多数应用场景来说,可能还需要下载对应的数据集以及任何可用的预训练参数文件作为起点来进行微调操作。 ```bash mkdir datasets models wget http://example.com/path_to_dataset.zip -P ./datasets/ unzip ./datasets/dataset.zip -d ./datasets/ wget http://example.com/pretrained_weights.pth -P ./models/ ``` #### 训练或测试模型 现在可以开始编写具体的命令行指令去启动实际的任务了——这可能是针对特定任务定制化调整后的完整训练周期或者是简单的验证现有检测效果的过程。 ```bash # 开始训练新的自定义对象识别器 python train.py --data custom_data.yaml --cfg yolov10_custom.cfg --weights '' --batch-size 16 # 或者仅加载已保存的最佳性能快照做预测评估 python detect.py --source test_images/ --weights runs/train/exp/weights/best.pt --conf-thres 0.4 ``` #### 文件传输方法 当涉及到将本地计算机上的YOLOv5/YOLOv10等相关材料传送到远程主机时,则可以通过SCP协议或者SFTP客户端实现安全可靠的迁移作业;当然也可以考虑借助于图形界面应用程序简化整个流程[^2]。 ```bash scp -r local_directory user@remote_host:/target_path ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值