文章目录
一、前言
在深度学习的目标检测领域,YOLOv5 以其轻量高效的特性被广泛应用。但本地训练此模型存在诸多弊端。本地计算机的 GPU 性能通常不足,训练时需长时间等待,效率极低,大大延长项目开发周期。并且本地资源扩展性差,面对项目规模扩大时,难以灵活升级硬件。此外,本地训练受硬件故障、软件冲突影响,易出现训练中断、数据丢失问题,不同项目的训练环境还易产生配置冲突,影响模型准确性与稳定性。
而使用 GPU 云服务器训练 YOLOv5 可有效解决这些问题。它计算资源强大,能显著提升训练速度、缩短训练时间,资源可按需灵活配置,还能保障数据安全与环境稳定。本文将详细介绍利用 GPU 云服务器训练 YOLOv5 模型的方法,助您高效推进深度学习项目。
1.1 流程介绍
本地修改好的yolov5的配置代码 + 数据集 一起打包zip文件 -> 本地oss 上传到存储桶 -> cloud gpu 服务器 安装yolov5镜像 -> 进入镜像服务器 oss 下载zip文件 -> 解压文件 -> 运行训练模型 -> 最终模型pt文件压缩并上传存储桶 -> 本地oss下载pt文件压缩包
二、云GPU平台选择
这里没有打广告的成分,是本人在学习的过程中找的一个云GPU平台,感觉还行,有需求可以看看,也可以看看有没有更好的平台。
https://gpushare.com/