使用GPU云服务器训练yolov5模型

一、前言

在深度学习的目标检测领域,YOLOv5 以其轻量高效的特性被广泛应用。但本地训练此模型存在诸多弊端。本地计算机的 GPU 性能通常不足,训练时需长时间等待,效率极低,大大延长项目开发周期。并且本地资源扩展性差,面对项目规模扩大时,难以灵活升级硬件。此外,本地训练受硬件故障、软件冲突影响,易出现训练中断、数据丢失问题,不同项目的训练环境还易产生配置冲突,影响模型准确性与稳定性。

而使用 GPU 云服务器训练 YOLOv5 可有效解决这些问题。它计算资源强大,能显著提升训练速度、缩短训练时间,资源可按需灵活配置,还能保障数据安全与环境稳定。本文将详细介绍利用 GPU 云服务器训练 YOLOv5 模型的方法,助您高效推进深度学习项目。

1.1 流程介绍

本地修改好的yolov5的配置代码 + 数据集 一起打包zip文件 -> 本地oss 上传到存储桶 -> cloud gpu 服务器 安装yolov5镜像 -> 进入镜像服务器 oss 下载zip文件 -> 解压文件 -> 运行训练模型 -> 最终模型pt文件压缩并上传存储桶 -> 本地oss下载pt文件压缩包

二、云GPU平台选择

这里没有打广告的成分,是本人在学习的过程中找的一个云GPU平台,感觉还行,有需求可以看看,也可以看看有没有更好的平台。

https://gpushare.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值