[论文分享] GDCL:图对比学习+聚类,解决伪负样本问题

Graph Debiased Contrastive Learning with Joint Representation Clustering 论文解析

 往期相关推送(持续更新中!):

[ICASSP 2024] CDNMF: 一个可信且高效的社区检测(社区发现,图聚类,Community Detection)方法-CSDN博客

[论文分享] DGI 图对比学习:局部-全局对比,最大化互信息-CSDN博客

[论文分享] GraphCL:图对比学习的增强方式,如何构造正样本?-CSDN博客

[论文分享] 对比学习的内在原理-CSDN博客

Motivation

· 图对比学习是无监督图表示学习中的一种突出技术。在图节点聚类(community detection)任务中,负样本的构造一般通过随机负抽样,没有考虑节点(隐含的)label信息。这样会在随机抽样中引入假负样本,降低模型的性能。

Contributions

· 该论文提出的对比学习框架统一了图表示学习和节点聚类,同时优化图表示以及聚类结果。

· 通过聚类结果生成伪标签,在此基础上进行负采样,一定程度上削弱抽样偏差现象,在节点分类、节点聚类以及图分类任务都取得了先进的性能。

Proposed Method

(1) 图增强:节点特征空间增强即masking node feature randomly

正样本:节点增强后,经过GCN的向量表示

负样本:在训练过程中同时进行聚类,根据聚类的结果生成伪标签,并根据伪标签的结果构建去偏的负样本,然后在负样本集中随机抽取M个负样本。

(2)聚类过程:

损失函数(相对熵损失,参考DEC算法)

Q分布(聚类分布)

q_{kj}代表第k个节点的嵌入表示与聚类中心\mu_{j}之间的相似度,用t分布来近似。

梯度更新可学习的聚类中心:

P分布(serves as ground truth soft label)

(3)对比损失:

遇上一篇介绍的不同,这里使用的是NT-Xent对比损失。 

(4)联合优化

Algorithm:

我们知道P分布是由Q分布导出的,用作真实分布。这里为了维持P分布的稳定性,设计每T个循环才迭代更新一次。

Experiment

聚类对比实验

消融实验

超参数的影响

References

[0] Zhao H, Yang X, Wang Z, et al. Graph Debiased Contrastive Learning with Joint Representation Clustering[C]//IJCAI. 2021: 3434-3440.

[1] Li Y, Chen J, Chen C, et al. Contrastive Deep Nonnegative Matrix Factorization for Community Detection[J]. arXiv preprint arXiv:2311.02357, 2023.

[2] Li Y, Hu Y, Fu L, et al. Community-Aware Efficient Graph Contrastive Learning via Personalized Self-Training[J]. arXiv preprint arXiv:2311.11073, 2023.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

6lyc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值