实验数据推断因果(一文解决abtest中溢出效应、网络效应、评估结果不显著问题)

1、为什么做ab

   能看到这篇doc的同学 大概率其实对ab肯定有一定认知的,聊到为什么做大家多少也能聊出来诸如一下点:

  小流量:

  • 对于动辄日活百万、千万、甚至上亿的产品来说,小流量实验能减少试错成本;

  AB随机分流

  • 随机分流能很好排除confunders 的影响

  统计推断科学性

  • 既然是以小流量实验的结果作出对最终结果的推断,即在统计学里面是用抽样结果做对总体的推断,即必然需要考虑抽样误差,置信水平等因素(核心原理part会着重讲)

2、怎么做ab:核心原理与方法

一文通关ABtest从原理到实操

3、怎么优化ab实验

【1】评估结果不显著怎么办?

这个问题,绝对,绝对,绝对是避不开的!!

即使数据分析大部分时候,是要保持客观性、独立性的存在,没有PM会想自己做了很久,花了很多运营和研发的人力,但得到的是一个对业务没有正向影响的评估结果!!

因此,实验前、实验后我们都要对可能产生的不显著结果做预判准备!

还是回到影响统计推断T统计量的几个因素来看,到底是什么影响了

首先直观看公式,t统计量的值受到3个值的影响:样本量n、样本方差、两组样本均值的差异;

  三个值分别与统计显著的关系:

    1、样本量越大 t检验量越大,越容易显著

    2、相较于对照组的提升越大,t检验量越大,越容易显著

    3、方差越小,t检验量越大,越容易显著

所以怎么提高评估敏感性呢?

  1. 增加样本量【流量放大实验试错成本大】

  2. 策略本身对评估指标有比较大的影响【没办法】

  3. 降低评估指标方差 【统计科学可以解决】

降方差方法:CUPED

1、核心思想:

CUPED(Controlled-experiment Using Pre-Experiment Data) 使用实验前的数据对实验评估指标进行修正,在保证无偏的情况下,得到方差更小从而更敏感的新指标,再对新指标进行统计检验。这种方法的合理性在于,实验前的数据可以解释实验评估指标的部分方差(因为二者存在一定的相关性),且与实验策略独立,因此合理地移除这部分方差不会影响实验效果的估计。

2、实现原理

控制变量法通过选择一个已知期望且和实验评估指标强相关、与实验策略独立的控制变量来修正实验评估指标,实现方差缩减。

以回归的思想来看,实验评估指标作为y变量, 找到一个【控制变量】,不受本次策略影响,但也影响y值,来减少方差,也就是回归中【总误差和】 = 【回归平方和】+ 【残差平方和】

通常选择相同指标在实验前的数据作为控制变量,相关性大,降低方差

修正后的指标的方差 = 回归中没有被控制变量解释的那部分,也就是残差平方和 ,少掉了那部分被回归平方和解释的部分,从而实现的降低方差,从而实现更容易显著的效果。

一些案例

https://exp-platform.com/Documents/2013-02-CUPED-ImprovingSensitivityOfControlledExperiments.pdf

booking.ai

【2】溢出效应解决

背景:

  SUTVA假设 (stable unit treatment value assumption)是ABtest中比较强的一个核心假设,即我们通常会假设实验中每个人的回应仅取决于自己的组别分配,而不取决于其他人的组别分配。

  但是由于互联网业务中网络效应的天然存在,这个假设很可能难以满足。

  比如测试了一种新的的推荐算法,以使其Feeds流推荐与用户更加相关来增加某些品类的购买频率。但如果用户A在策略组中下单并且与对照组中的用户B互相分享(如分享活动链接或券),则用户A的购买行为更改可能会影响用户B的购买行为。用户A可能对Feeds上的推荐品类表现出更高的购买力,因此开始共享更多的链接或活动券。最终将对用户B产生影响,用户B可能会开始购买推荐的品类而又没有新的feeds流曝光体验。这种效应我们称之为溢出效应(spillover effect)。

  导致的结果是:对照组评估指标也受到策略影响上升,从而使得策略效应被低估;

团簇分流法:引入交互关系做随机分流

为了科学的评估出策略效应,我们提出了团簇分流(cluster sampling),也称为网络分桶(network bucketing)的解决方法,实现上其实很简单,即随机化是在用户群集级别上进行的。换句话说,如果用户是控制组的一部分,则与他们交互连接的很大一部分也将分配给控制组。

【3】网络效应解决

背景:

上面提到的溢出效应更多是指对对照组产生了正向的影响,导致实验策略效应被低估,更多适用于比如feeds流或者在电商业务中供给无限且不价格不会动调的场景;但是我们换个业务场景,比如美团外卖和滴滴出行这种双边市场业务。

比如现在做ab,希望评估不同补贴对骑手提升工作时长、留存率、完单等指标刺激,海淀区这一块有些外卖司机5元补贴,有些8元,8元的司机努力工作了更长的时间,接了更多的单,但是该天总需求量没有变,这就导致那部分5元的司机没有单接,一下子工作意愿就下降,对照组指标虚低,实验组虚高,导致策略效应严重高估。

补充一下,这里说的高估和低估都是相对于真实放全量的理想策略效应。

时间片轮转实验:

1、实现方式:

每天均匀分成n个时间切片,次日轮转,尽可能保证双周的实验周期,减少周期性因素的影响;

2、适用场景:

策略效应倾向于即时生效,比如外卖和打车的补贴,用户都是大部分有即时的需求,才会去到app, 而相比之下,电商场景,很多时候,大家真的就是看看,过几天再买是常有的事情,这时候用时间片实验就不是很合适。

特别需要注意的是:这里的样本其实就是每一个时间切片,大部分场景下,14天的周期都是能够满足样本量的要求,不再有对实验城市本身用户量等计算最小样本量的约束!

3、评估方法:

看到这里,大家肯定会有对这种实验方法的质疑,对,这个分流方式太粗了,以至于其实很难像人群粒度的随机分流一样,拉齐很多影响最终实验效果的因素,我们如果只是用t 检验进行评估,一类错误会很高,评估结果科学性欠妥。

所以我们引入了VCM的方法, VCM(Varying Coefficient Model)又称变系数模型,可以简单理解为对不同城市、不同时间片采用线性回归来估计策略对响应变量的影响,最后再把这些影响加和,由于加入了协变量且不同时间片系数不同,能较好控制一类错误。

相关系列更多知识:关注gzh 《大佬等我呀》

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
格兰杰因果检验是一种用于判断两个变量之间是否存在因果关系的统计方法。在R语言,可以使用Granger.test()函数来进行格兰杰因果检验。下面是一种基本的判断方法: 1. 导入数据:首先,将所需的数据导入到R环境,并确保变量的时间序列完整且已经进行了适当的前处理(例如差分、去趋势等)。 2. 选择变量:选择需要进行格兰杰因果检验的两个变量,例如X和Y。 3. 运行格兰杰因果检验:使用Granger.test()函数进行格兰杰因果检验。将X和Y作为参数传递给该函数,并设置lag参数(滞后阶数)来指定检验的滞后期数。 4. 判定因果关系:通过格兰杰因果检验结果来判断变量X是否因果影响Y。如果p值小于显著性水平(通常是0.05),则可以认为X对Y具有格兰杰因果关系;否则,无法得出因果关系。 例如,假设有两个变量X和Y,我们想要判断X是否因果影响Y。可以按照以下步骤进行: data <- read.csv("data.csv") # 导入数据 X <- data$X # 选择需要检验的变量X Y <- data$Y # 选择需要检验的变量Y result <- Granger.test(X, Y, order = 1) # 运行格兰杰因果检验,设置滞后期数为1 if (result$p.value < 0.05) { # 判断格兰杰因果检验结果是否显著 print("存在格兰杰因果关系") } else { print("不存在格兰杰因果关系") } 需要注意的是,格兰杰因果检验只能提供关于变量之间因果关系存在性的统计推断,但不能确保因果关系的实际存在和方向性。因此,在进行格兰杰因果检验时,需要结合背景知识和领域经验来进行综合判断。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值