目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤

该博客详细介绍了如何使用Yolov4-Tiny进行目标检测,包括数据集下载与处理、模型训练、预测及网络评估。作者分享了训练50次后的结果,并提供了代码资源链接,帮助读者理解并实践目标检测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️

Yolov4-Tiny讲解🌟

https://www.bilibili.com/video/BV18h411d7by?p=4

Yolov4-Tiny-backbone🌟

在这里插入图片描述

Github-代码下载🌟

https://github.com/bubbliiiing/yolov4-tiny-pytorch

数据集下载🌟

这里用的数据集是VOC2007或者2012
官网下载地址:https://pjreddie.com/projects/pascal-voc-dataset-mirror/
在这里插入图片描述
下载好了之后。目录为下图
在这里插入图片描述

数据集处理🌟

找到voc_annotation.py文件,修改对应的数据集路径
在这里插入图片描述
训练后生成在这里插入图片描述只有2007_train.txt有东西,我们训练的时候只需要这个文件,所以其它的无关紧要,然后就可以开始训练了。

训练网络🌟

从github下载下来之后就可以先修改训练类别的路径(和数据集所需要的类别保持一致,如果有自己的数据集,就按照VOC格式生成,并载入自己的类别名就好了),然后就可以运行train.py了。
在这里插入图片描述
其它的就没有什么可以改的了,如果环境配置也没问题的话,其实最主要就是pytorch的环境,其它的看需要pip install就好了。然后开始训练
在这里插入图片描述

预测网络🌟

这里包括三种预测的方式:1.测试图片 2.测试视频 3.测试摄像头 4.测试图片的fps,修改yolo.py里的这两个位置,一个是你训练好的模型,一个是你的类别文件,然后,打开predict.py,选择你想要预测的方式,就可以开始预测。
在这里插入图片描述

在这里插入图片描述
我训练50次之后的结果(没有加预训练模型)
测试图片:
在这里插入图片描述

在这里插入图片描述

评估网络🌟

这里用Map来进行评估,map就是所有类的AP50-95的平均值,50指的是iou=0.5,95指的是iou=0.95,iou指的是预测框和真实框的交并比。越大说明预测结果越准确。

1.找到
在这里插入图片描述
2.修改16,17行,分别是VOC2007中所有sml文件的路径和你想要保存结果的路径(建议别放在你原来的VOC数据集中)
在这里插入图片描述
3.如果你想要拥有测试集就将trainval_percent的值修改为0.9,这样里面所有的图片就会有1%生成为测试集在这里插入图片描述
4.然后开始运行voc2yolo4.py,就可以看到生成下面的4个txt文档
在这里插入图片描述
5.找到get_gt_txt.py然后修改image_ids所对应的路径,也就是上面我们得到的test.txt。在这里插入图片描述
在这里插入图片描述

运行后就可以生成下面这个文件夹a,里面的每个结果是类别+坐标位置
在这里插入图片描述
6.生成检测结果的文件夹,为了和原始框做对比,通过get_dr_txt.py,需要注意以下地方。

  • 36行:将confidence设置为0.01,因为后面计算map是要通过iou进行筛选的,所以这里应该设置得低一些
  • 117行:测试的test.txt需要和生成ground_truth的测试文件保持一致
  • 127行:修改成对应的JPEGImage文件的路径

运行结果如下:
在这里插入图片描述
7.直接运行get_map.py就可以得到所有的值得map,以及各类的ap指标。
在这里插入图片描述
这是没有进行预训练的mAP,如果进行了预训练应该能提升接近一倍。
在这里插入图片描述
✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZY_dl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值